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Abstract 
 
The heat transfer characteristics of axisymmetric flow past a rotating torus in viscous incompressible fluid have been 

investigated numerically. The torus surface rotates about its centerline with constant velocity. The governing equations in a 

toroidal coordinate system are solved by using a finite difference method for ranges of parameters: Reynolds number 

20 40Re  ; Prandtl number 0 7 100. Pr  ; rotational speed 0 1 9.  ; and fixed aspect ratio 2Ar  . The heat transfer 

characteristics are presented in terms of the isotherm patterns, local Nusselt numbers, and average Nusselt numbers. Variation of 

the local Nusselt number on the torus surface shows the effect of the Prandtl number and rotational speed on heat transfer from a 

torus in the flow regime. Torus rotation is an efficient Nusselt number reduction or torus surface temperature enhancement 

technique. 
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1. Introduction 

 

Heat and fluid flow past bluff bodies have been 

extensively studied by many researchers for a long time. With 

their simple geometrical shape and wide variety of practical 

applications examples that were studied are circular cylinder 

(Bharti, Chhabra, & Eswaran, 2006, 2007; Juncu, 2007; Khan, 

Culham, & Yovanovich, 2005; Lange, Durst, & Breuer, 1998; 

Moshkin & Sompong, 2010; Soares, Ferreira, & Chhabra, 

2005; Sungnul & Moshkin, 2006), sphere (Dennis, Walker, & 

Hudson, 1973; Dhole, Chhabra, & Eswaran, 2006; Feng & 

Michaelides, 2000), and torus or ring (Moshkin & 

Suwannasri, 2010; Moshkin, Sompong, & Suwannasri, 2013; 

Sheard, Hourigan, & Thompson, 2003; Suwannasri, 2016). 

 
The flow past a torus is a basic concept that can be extensively 
applied to many problems such as bio-fluid mechanics for 

DNA polymers, properties of flow with micelles, and the drag 

and heat transfer performance for helical heating tubes. The 

present work concerns the heat transfer over a torus rotating 

about its centerline. The geometry of a torus (Figure 1) can be 

characterized by its aspect ratio /Ar b a , which is the ratio 

of the center-line diameter of the torus 2b  to the cross-section 

diameter of the torus 2a . When 0Ar  , the torus becomes a 

sphere. On the other hand, it becomes a single cylinder as 

Ar   (Sheard et al., 2003). 

The problem of flow past a rotating torus has not 

been investigated widely in the literature. Under the influence 

of rotation, the uniform flow across a torus is useful for flow 

control, lift enhancement, and reduction of drag force and heat 

transfer. For flow across a rotating torus, the results not only 

depend on the Reynolds number ( Re ), Prandtl number ( Pr ), 

and aspect ratio ( Ar ) but also depend on the rotational 

velocity ( ). The rotational velocity represents the torus
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Figure 1. Sketch of the geometry of the torus. 
 

surface tangential velocity in terms of free stream flow 

velocity. 

The preliminary results of flow and heat transfer 

over a stationary torus placed in a uniform flow was reported 

in our earlier work (Moshkin et al., 2013) for ranges of 

Reynolds numbers 20 40Re  , Prandtl numbers 

0 7 100. Pr  , and aspect ratios 1 4 20. Ar  . In this 

paper, the objective is to extend the heat transfer study from 

flow past a stationary torus to flow past a torus rotating about 

its centerline for some ranges of Re, extended Prandtl numbers 

in the ranges of 0 7 100. Pr  , and a fixed aspect ratio of 

2Ar  . The mathematical formulation for the problem is 

described in Section 2. The problem is recast in terms of the 

toroidal coordinate system. Section 3 presents the numerical 

algorithm based on the projection method for solving the 

Navier-Stokes equations. The various numerical results are 

reported and discussed in the final part. 

 

2. Mathematical Formulation for the Problem 
 

The physical system that we considered is shown in Figure 1 which consists of a torus with meridional cross-sectional 

radius a , torus radius b , and surface 
bS , where it is placed axisymmetrically in a uniform stream (from bottom to top) in 

which the flow has constant properties of velocity U
, pressure p

, and temperature T
. The fluid is viscous and incompressible 

with constant properties of density   and viscosity .  

The best suited coordinate system for the problem under consideration is the toroidal coordinate system. In terms of the 

toroidal coordinates and the assumption of axisymmetry, the governing Navier-Stokes equations in dimensionless form are given 

by 

Momentum equations: 
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Continuity equation: 
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Energy equation: 
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where   is the pressure, v , and v  are the velocity components in   and   directions, respectively, and 

 / cosh cos .h c     The governing equations are made dimensionless using the following scaling variables: radius of a 

cross-section of torus a  for length variables, U
 for velocities, /a U

 for time, and 2U 
 for pressure. The temperature is 

non-dimensionalized using ( ) / ( )WT T T T   . Here Re  denotes the Reynolds number defined by 2U a
Re ,


  the Prandtl 

number is given by pc
Pr




  where   the viscosity of the fluid, /    is the kinematic viscosity, pc  is the heat 

capacity, and   is the thermal conductivity. 

 

The boundary conditions based on the problem are as follows: 

- Torus surface: We use the no-slip, impermeability and constant temperature conditions on the right computational boundary of 

Figure 2. 
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where ( ) /a U    is the nondimensional rotational velocity at the surface.  

- Periodicity conditions: We use the periodic conditions for all variables on the bottom and top boundaries of Figure 2. 
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- At infinity: We use the uniform flow condition at the far-field boundary which is the boundary of domains  
1  and 

2  in 

Figure 2. 
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Figure 2. Staggered arrangement of u, v, p, and T  in the computational domain. 
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Here, rv and zv  are the components of the velocity vector in the cylindrical coordinate system with 
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- Axis of symmetry  0r  : The velocity components, pressure, and temperature on the left computational domain boundary are 

satisfied under the following conditions: 
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The two most important hydrodynamic characteristics of the flow around the body are the net force and angular 

momentum. The net force is decomposed into two components 
LF  and 

DF  that are perpendicular and parallel to the flow 

direction, respectively. The net torque and 
LF  are equal to zero due to the symmetry of the flow. The drag coefficient is defined 

as 
2

,
0.5

D
D
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F
C
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 where  and 
frontalA  are the fluid density and the projected frontal area of the body, respectively. The 

drag coefficient is comprised of a pressure drag coefficient and a viscous drag coefficient, i.e.  
p fD D DC C C  . They are defined 

as 
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The vorticity   is defined by the following equation: 
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The important parameter of interest in heat transfer problems is the heat transfer rate per unit area from the torus wall to 

the ambient fluid. The local Nusselt number in the toroidal coordinate system based on the diameter of the torus is defined as 
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The average Nusselt number is calculated by averaging the local Nusselt number over the surface of the torus. 
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3. Numerical Methods of Solution 

 

In the case of steady flow, time in equations (1), (2), and (4) can be considered as an artificial (iterative) parameter. A 

staggered placement of variables is used with velocity components u v  located on the vertical sides of each cell and 

components v v  on the horizontal sides of each cell. Pressure p  and temperature T are represented at the center of each cell.  
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A two-step time-split projection method is utilized to advance the flow field. First, the velocity components are 

advanced from time level “ n  ” to an intermediate level “*” by solving (1) and (2) explicitly without the pressure term. In the 

advection-diffusion step, the spatial derivatives are approximated by the central finite differences. One side finite differences are 

utilized near boundaries due to the staggered arrangement of variables. Then, the Poisson equation for the pressure is solved fully 

implicitly by the method of stabilizing correction (Yanenko, 1971). The equation for pressure is derived using the mass 

conservation requirement for each computational cell. Once the pressure is updated, the final level is computed with a pressure-

correction step. When the steady solution of Navier-Stokes equations (1)-(3) is computed, the iterative method of stabilizing 

correction is used to find the steady distribution of the temperature field given by equation (4). 

Figure 2 shows the computational domain, the sketch of the grid, and the location of the unknowns. Far-field boundary 

conditions (7) are shifted on the boundary of domains 
1   and 

2  which are defined as 
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where, K     and M    , K , and M  are integer numbers, and   and  are the sizes of the computational cells in 

the   and   directions, respectively. 

 

4. Results and Discussion  

 

4.1 Validation of the results 

 

The grid refinement test was carried out for two 

Reynolds numbers 20Re   and 40 and three aspect ratios 

2 3Ar , , and 20. Three grids with refinement factor 

1 5coarse fineh / h .  were used. The grid convergence indices 

were estimated in the standard way with the factor 1.25 

(Roache, 1994). To reach a numerical solution, the compu-

tations were advanced in time (artificial time) until the drag 

coefficient had reached a constant value. The main simulation 

was carried out with dimensionless time steps of 0.0001 that 

were chosen in agreement with stability requirements. 

Little data are available in the literature to verify the 

accuracy of flow and heat transfer over a torus rotating about 

its centerline. We expected that the flow and heat transfer over 

a torus at large Ar  would be similar to the flow and heat 

transfer over two circular cylinders with large gap between the 

cylinder surfaces (Moshkin et al., 2013; Moshkin & 

Suwannasri, 2010). The average Nusselt number for 20Ar  , 

20 30 40Re , , , and 0 7 10 0Pr . .    was compared with 

data from the literature for heat transfer around two circular 

cylinders with a large gap and single cylinder. The deviations 

between our numerical results and the values in the literature 

were within ±5%. The Nusselt number distribution on the 

torus surface with 20 40Re , ,  20Ar   and 

0 7 10 0Pr . .   was compared with Bharti (2007) for the 

local Nusselt number on the surface of a single cylinder. Our 

numerical results were good and in agreement with the work 

by Bharti. More details can be seen from Moshkin et al., 

(2013). 

In order to validate the computational code of flow 

around a rotating torus, we developed the numerical code for 

the flow past two rotating cylinders. The drag coefficients 
DC  

for 20Re , 20Ar   and four different rotational speeds 

( 0 0 5 1 0, . , .   and 2.0) were considered. The difference 

between our results and the results of Sungnul and Moshkin 

(2006) for two rotating cylinders as well as the results of 

Chung (2006) for the case of one rotating cylinder were in the 

range of 2% to 3% (Moshkin & Suwannasri, 2010).  

The comparisons of our numerical results with the 

literature data allowed us to conclude that the numerical 

method and computer code were well suited and can be used 

to simulate the flow and convective heat transfer over a torus 

rotating about its centerline. 

 

4.2 Temperature contours 

 

Because of axial symmetry, we present the 

temperature patterns only in a cross section of the torus. The 

details of temperature contours in the vicinity of the torus are 

presented in Figure 3 for the case of 30Re  , 2Ar  , 

0 1 1 5 1 9, , . , .  , and
 0 7 10 20Pr . , , . This figure 

demonstrates the effect of both rotational speed and Prandtl 

number on the temperature field. For 0,   and 10Pr  , 

there are almost separate wake-types of downstream isotherm 

patterns (Figures 3: 1st-column, 2nd and 3rd-rows). As   

increases, the isotherms near the torus incline more toward the 

hole corresponding to the rotational direction. When 1  , 

the vortex shedding at the hole side of a rigid torus does not 

occur but vortex shedding occurs only at the outside shear 

layers on the side of free stream which results in the single 

bluff-body wake pattern while the outer isotherms elongate 
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Figure 3. Temperature contours over the torus at 1st column: 0  , 2nd column: 1  , 3rd column: 1 5.  , and 4th column: 1 9.  , 

1st-row: 0 7Pr . , 2nd row: 10Pr  and 3rd row: 20Pr  for  Reynolds number 30Re   and 2Ar  . 

 

and decrease in the lateral width. Isotherm patterns depend on 

the Prandlt number. An increase in the Prandlt number at the 

same rotational speed leads to a narrow wake-shaped region 

of the temperature field and a decrease in the extension of the 

isothermal toward the downstream as shown in second, third, 

and fourth columns of Figure 3. 

 

4.3 Local Nusselt number 

 

Variations of the local Nusselt number on the torus 

surface are shown in Figures 4 and 5. The circumferential 

direction   varies from 0  to 360  and corresponds to the 

angular coordinate of the circular cross-section of the torus by 

the meridional plane. Here, 0   represents the front 

stagnation point and 0 180o o   corresponds to the outer 

surface of the torus and 180 360o o   corresponds to the 

inner surface. 

The local Nusselt numbers on the torus surface at 

20 2Re , Ar   for different rotational speeds and three 

different Prandtl numbers are shown in Figure 4. In the case of 

0 7Pr . , Figure 4a shows that an increase in rotational speed 

leads to a shift of the points of maximum and minimum values 

of the Nusselt number in the direction of rotation. Figure 4b 

and Figure 4c show that at 0  , the Nusselt number is 

almost symmetric about 180  . The maximum/minimum
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 4. Local Nusselt number variations on the surface of the 

torus at 20Re  , 2Ar   for different  , and (a) 

0 7Pr . , (b) 10Pr  , and (c) 20Pr  .  
 

values of the local Nusselt number decreases/increases when 

  increases from 0.5 to 1.9. For 1   and at large Prandtl 

numbers  ( 10Pr  ),  the minimum  values of Nu   appear  at 

the same position  at 280  .  In Figure 4c,  at 20Pr  ,  the 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 5. Local Nusselt number variations on the surface of the torus 

at 2Ar  , 1   for different Pr , and (a) 20Re  , 

(b) 30Re  , and (c) 40Re  . 

 

deviation of Nu  becomes smaller on the inner side surface of 

the torus as 1 5.  . This behavior is expected due to the no-

slip condition. 
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Figure 5 shows the surface Nusselt number as a 

function of circumferential direction ( ) for various values of 

Prandtl number and three different Reynolds numbers 

( 20 30Re , ,  and 40) at 2Ar , 1  . The numerical 

study shows that the Nusselt number always increases when 

the Prandtl number or Reynolds number or both increase. As 

the Prandtl number increases, the local Nusselt number 

increases up to the maximum value and after that it decreases 

to a minimum value at the rear part, 280   (see the second 

column in Figure 3).  

 

4.4 Average Nusselt number 

 

The effect of rotational speed ( ) on the average 

Nusselt number ( Nu ) at 2Ar  , 20 40Re , , and 

0 7 50Pr .   is shown in Figure 6. At a fixed value of  , 

the value of Nu  increases monotonically as the Pr  or Re  or 

both increase. For all Pr  considered in this study, the 

behavior  of Nu    has   the  same  decaying  pattern  with   the    

 
(a) 

 

 
(b) 

 

Figure 6. Average Nusselt number ( Nu ) at 2Ar   for different 

Pr  and (a) 20Re  , and (b) 40Re  . 

increasing   and also the reduction of local variation of 

Nusselt number with increasing  (Figure 4). The decreases 

in Nu  with increasing  can be explained on the basis that 

the region occupied by rotating fluid surrounding the torus 

enlarges as   increases, which prevents the main stream 

from penetrating the hole of the torus. Hence, the conduction 

mode is predominant to the heat transfer near the rotating 

torus.   

 

5. Conclusions 

 

The present work is a continuation of our previously 

published work (Moshkin et al., 2013) for the flow and heat 

transfer around a stationary torus placed in uniform flow. The 

present work is a more detailed characteristic of heat transfer 

with a different rotational speed of the torus surface and 

Prandtl number. The numerical algorithm based on the 

projection method was developed to solve the Navier-Stokes 

equations in the toroidal coordinate system.  

The present study numerically investigated the 

characteristics of 2D heat transfer past a torus rotating about 

its centerline for a various range of rotational speeds, 

0 1 9.  , Prandtl numbers, 0 7 100. Pr  , Reynolds 

numbers, 20 40Re  , at a small aspect ratio of the torus, 

2Ar , . As   increases, the isotherms near the torus 

incline more toward the hole corresponding to the rotational 

direction. An increase in Pr  generates a narrow wake-shaped 

region and a decrease in the extension of the isothermal 

toward the downstream. An increase in α leads to a shift in the 

points of maximum and minimum values of the local Nusselt 

number in the direction of rotation. The average Nusselt 

number was found to decrease as α increases and found to 

increase as Pr  increases. 
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