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Abstract 
 
This paper proposed a method to determine the path scallop of toroidal cutter in five-axis milling during a complex 

surface machining. A mathematical algorithm was developed by taking into consideration the impact of the helical angle and 

inclination angle. The applicability of the proposed method was tested using two model parts with diverse surface profiles. The 

result showed that the method was effectively used to generate the path scallop data. Moreover, the program simulation could also 

generate the shape of a machined surface. The effect of the helical angle to the scallop height was also tested and the result showed 

that the helical angle tended to decrease the scallop height. On the other hand, a larger inclination angle produced a larger scallop 

height. The verification test using Siemens-NX proved that the method was accurate. 
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1. Introduction 
 

Generally, several variables are used to indicate the 

quality of a machined surface that include the machining 

tolerance, scallop height, and surface roughness. In five-axis 

machining, the scallop height is the most substantial variable in 

defining the quality of a machined surface. It is affected by: 1) 

the geometry of cutting tool, 2) the tool orientation, 3) the 

geometry of part surface, and 4) the length between two 

succesive tool path (step over) (Hendriko, 2017a.) Therefore, 

the scallop must be controlled so that the expected surface 

quality can be obtained. The scallop height is difficult to 

calculate in five-axis milling due to the complicated part 

surface and tool orientation. Hence, an accurate method to 

calculate the scallop height is still a challenge in achieving 

optimal tool path during sculptured surface machining.  

In modeling and computing the scallop height, 

accurate cutter workpiece engagement (CWE) information is 

very important. Precise geometric information has a direct 

influence on the precision of scallop height calculations. There

 
are three common methods used for calculating the CWE: solid 

model; discrete method; and the analytical approach. Erdim and 

Sullivan (2012, 2013) used solid modeler based composite 

adaptive sampled distance fields to calculate the geometric 

modeling in five-axis milling. Meanwhile Aras and Albedah 

(2014) proposed closed boundary representation to calculate 

the surface intersection between the workpiece material and the 

cutting tool. Other researchers have used discrete methods such 

as Z-mapping and modified Z-mapping. Kim, Cho, and Chu 

(2000) used a Z-mapping method to determine the shape of 

CWE. Then, Wei, Wang, and Cai (2013) proposed a modified 

Z-mapping algorithm to define CWE in sculptured surfaces. A 

solid model produces an accurate result, but it also has the 

drawback of expensive computational cost. Therefore, many 

researchers have used discrete methods because it is 

computationally more efficient than the solid model. However, 

the computational time of the discrete method increases 

intensly if the precision and accuracy are refined.  

Considering these problems, some researchers were 

attracted to developing an analytical approach to calculate the 

scallop height and cut geometry in five-axis milling. Compared 

to discrete approaches and the solid model, the analytical 

approach was much faster and more accurate. Several studies 

(Hendriko, 2013, 2015, 2017a, 2017b; Hendriko, Kiswanto,  &  
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Duc, 2017; Kiswanto, Hendriko, & Duc, 2014a, 2014b, 2015) 

developed an analytical method which was called the analytical 

boundary method (ABS), to calculate the cut geometry of a flat-

end cutter and toroidal cutter during sculptured surface 

machining. From a series of tests, it was found that the proposed 

method is applicable to calculate CWE accurately. Further-

more, the computational cost of ABS was proven much cheaper 

than the Z-mapping method. 

Many studies have been performed to calculate the 

scallop height. Several researchers (Bedi, Ismail, & Mahjoob, 

1997; Hricora & Napstkova, 2015) investigated the 

effectiveness of an inclined flat-end cutter in the milling of free-

form part surfaces. The results showed that the inclined flat-end 

cutter generates smaller scallops compared to the ball-end 

cutter. Other studies (Yigit & Lazoglu, 2015; Wang, Zhang, & 

Yan, 2016) proposed a method to define the scallop height of a 

ball-end cutter to achieve optimal step-over. Tunc and Budak 

(2009) investigated the effect of cutter posture angle to the 

scallop height in five-axis milling. The results showed that the 

cutter posture angle significantly influenced the scallop height. 

In contrast to the cutter posture angle, studies to investigate the 

effect of helical angle to the scallop height are still quite 

lacking. 

Most studies in the analytical approach addressed the 

issue of scallop height for toroidal cutter by simply assuming 

that the curvature was constant and cutter geometry was 

approximated by two common primitive geometries, either 

circle or ellipse. Senatore, Segonds, Rubio, and Dessein (2012) 

calculated the effective radius of a toroidal cutter due to the 

inclination angle to represent the swept curve. Then, the scallop 

height with respect to the radius of part surface was determined 

using an approximated swept curve, and finally, an optimal 

step-over could be calculated. Others studies (Bedi, Ismail, 

Mahjoob, & Chen, 1997; Chiou & Lee, 2002; Hricora & 

Napstkova, 2015; Ozturk et al., 2009; Senatore et al., 2012; 

Wang et al., 2016; Weinert, Du, Damm, & Stautner, 2004; 

Yigit & Lazoglu, 2015) used ellipse to represent the inclined 

flat-end and ball-end mills. Many studies proved that a 

parametric equation of an ellipse curve could be used precisely 

to represent the swept curves of an inclined flat-end and ball-

end mill. However, this approach is not applicable for a toroidal 

cutter. A geometrical toroidal cutter is more complex than the 

flat-end mill and ball-end mill because it is constructed from 

two faces: cylindrical face and toroidal face. Consequently, 

calculating the swept curve when the cutter was set with an 

inclination angle becomes much more complicated. This issue 

will be proven in the section of implementation and discussion.  

In this study, the swept curve was defined by 

extending the method to identify the lower engagement point 

(LE-point) which is called the grazing method proposed by 

Kiswanto et al. (2014a). The scallop height was defined as the 

length between the intersection point of the cutting path to the 

surface normal. Therefore, the algorithm of the grazing method 

was then extended so that it could be used to determine the 

intersection point between two consecutive tool paths. The 

intersection point of the cutting path was deter-mined using a 

combination of a coordinate transformation system and 

algorithm of swept curve. Meanwhile, the surface normal at the 

instantaneous tool position was determined based on the 

instantaneous surface shape. In this study, the shape of the part 

surface at an instantaneous cutter position was defined using 

three normal vectors mathematically. The ABS proposed by 

Kiswanto et al. (2015) was used to define the shape of a part 

surface and calculate the normal distance. In this study, the 

algorithm to determine the scallop height was developed by 

taking into consideration the effect of the tool inclination angle 

and helical angle. 

 

2. Swept Curve Calculation 
 

In this study, the algorithm was derived for a toroidal 

cutter. Typically, the surface of a toroidal-end cutter is 

constructed by cylindrical and toroidal faces (Figure 1a). 

However, despite the construction by two faces, the scallop 

height is created only by the engagement between the toroidal 

side and the workpiece material. The shape of the toroidal face 

in the cutter coordinate frame (CCF) is defined using the 

following equation,  

 

𝐺𝑇 (𝜑; 𝜆) [
𝑥
𝑦
𝑧
] = [

(𝑟𝑚 + 𝑟 𝑠𝑖𝑛 𝜆) 𝑠𝑖𝑛 𝜑
(𝑟𝑚 + 𝑟 𝑠𝑖𝑛 𝜆) 𝑐𝑜𝑠 𝜑

𝑟 − 𝑟 𝑐𝑜𝑠 𝜆

] (1) 

 

where r is the corner radius of the cutter and rm is the length 

between point T to point e (Figure 1a). Meanwhile  and  demote 

the toroidal angle and rotational angle, respectively. 

In five-axis milling, the cutter can move freely in 

space because it can be rotated in the x-axis and y-axis 

directions. A complex part surface can be machined effective-

ly by managing the motion of the cutter with respect to the part 

surface normal (curvatures).  

In this study, three coordinate systems were used to 

define the location and posture of the cutting tool (Figure 1b). 

They are global coordinate frame (GCF), which is used as the 

reference coordinate system, cutter coordinate frame (CCF), 

and local coordinate frame (LCF). GCF is a permanent frame 

denoted by the basis vectors x, y, z, while CCF and LCF are 

represented by u, v, w and X, Y, Z, respectively. The tool 

inclination angle (α) is normally used in five-axis milling when 

machining a free-form part surface. The tool rotation angle is 

formed with respect to CCF and LCF (Figure 1c). For the 

purpose of coordinate system transformation from CCF to LCF, 

an appropriate mapping operator [M] is required. The 

transformation operator involves the tool orientation about the 

x-axis θA, y-axis θB, and also the tool displacement at T, which 

is defined as follows:  

 

[𝑀] =

[
 
 
 
 

𝑐𝑜𝑠 𝜃𝐵 0 𝑠𝑖𝑛 𝜃𝐵 𝑥𝑇

𝑠𝑖𝑛 𝜃𝐴𝑠𝑖𝑛 𝜃𝐵 𝑐𝑜𝑠 𝜃𝐴 −𝑠𝑖𝑛 𝜃𝐴𝑐𝑜𝑠 𝜃𝐵 𝑦𝑇

𝑐𝑜𝑠 𝜃𝐴𝑠𝑖𝑛 𝜃𝐵 𝑠𝑖𝑛 𝜃𝐴 𝑐𝑜𝑠 𝜃𝐴𝑐𝑜𝑠 𝜃𝐵 𝑧𝑇

0 0 0 1 ]
 
 
 
 

 (2) 

 

The cutter coordinate frame with orthogonal basis 

vector u, v, w, which is located at the bottom center of the 

cutting tool (point T), was determined by, 
 

 

w =

[
 
 
 
cos α 0 sin α

0 1 0

sin α 0 cos α]
 
 
 
 [0 0 1 ]T = [sin α 0 cos α]T (3) 
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Figure 1. (a) Geometry of the cutting tool, (b) tool orientation relative 

to GCF, (c) three coordinate systems. 

 

𝑣 =
𝑤 × 𝑉𝑇

|𝑤 × 𝑉𝑇|
  ;    𝑢 = 𝑣 × 𝑤 (4) 

 
𝑉𝑇 is the linear velocity from cutter location (CL) point to the 

next and it was calculated as follows:  

 

𝑉𝑇 =
𝐶𝐿(𝑖+1) − 𝐶𝐿(𝑖)

𝑓
  ;   (𝑖 = 1,2,3, … ) (5) 

 

There are three points that construct the swept 

envelope: egress point; grazing point; and ingress point (Chio 

& Lee, 2002; Weinert et al., 2004). In this study the algorithm 

to develop the swept curve was derived by improving the 

method proposed by Kiswanto et al. (2014a). The grazing 

method to determine the lower engagement point in the cut 

geometry calculation was extended so that it could be used to 

calculate the swept curve. The swept curve was constructed by 

a set of swept points at every rotation angle. The swept point 

can be defined after the toroidal angle (λ) is determined. The 

swept point is determined using the tangency function: 
 

𝐹(𝜗,𝜑,𝑝) =  𝑁𝑆𝑇 (𝜗,𝜑,𝑝). 𝑉𝑆𝑇 (𝜗,𝜑,𝑝) = 0 (6) 

 

where 𝑵𝑺𝑻(𝝋) is the surface normal of the cutting tool and 𝑽𝑺𝑻 
 

is the moving vector of the cutting tool. Then, all of the points 

at every rotation angle that construct the swept curve are 

calculated using the same method. The surface normal of an 

arbitrary point on the cutting tool in CCF is expressed by, 

 

𝑁𝑆𝑇 
=

𝜕𝑆𝑇/𝜕𝜆

|𝜕𝑆𝑇/𝜕𝜆|
×

𝜕𝑆𝑇/𝜕𝜑

|𝜕𝑆𝑇/𝜕𝜑|
= [

𝑠𝑖𝑛 𝜆 . 𝑠𝑖𝑛 𝜑
𝑠𝑖𝑛 𝜆 . 𝑐𝑜𝑠 𝜑

−𝑐𝑜𝑠 𝜆

] (7) 

 
When Equation 7 was mapped to the moving system, it yields, 

 

𝑁𝑆𝑇
′(𝜗,𝜑,𝑝) = 𝑐𝑜𝑠(𝜑). 𝑠𝑖𝑛 𝜆 . 𝑣 − 𝑐𝑜𝑠 𝜆 . 𝑤 + 𝑠𝑖𝑛 𝜆 . 𝑠𝑖𝑛(𝜑) . 𝑢 (8) 

 
The moving vector of an arbitrary point on the cutting tool was 

calculated using Equation 9, 

 

𝑉𝑆𝑇 
= 𝑉𝑇 + 𝑄𝑇⃗⃗⃗⃗  ⃗ × 𝜔 (9) 

 

where 𝜔 and 𝑄𝑇⃗⃗⃗⃗  ⃗ denoted the angular velocity and the vector 

from 𝑄 to 𝑇, respectively. Since the model was developed by 

assuming that the tool is static, there was no angular motion 

(𝜔 = 0). Therefore, the linear velocity is equal to 𝑓 (𝑉𝑇 = 𝑓) 

and the tangency function yields, 

 

𝐹(𝜗,𝜑,𝑝) = 𝑠𝑖𝑛 𝜆 . 𝑠𝑖𝑛(𝜑) . (𝑉𝑇 . 𝑢) 

                   + 𝑠𝑖𝑛 𝜆 . 𝑐𝑜𝑠 (𝜑) . (𝑉𝑇 . 𝑣) 

                   + 𝑐𝑜𝑠 𝜆 . (𝑉𝑇 . 𝑤) = 0 

(10) 

 

Since 𝑉𝑇 is perpendicular to 𝑣, then 𝑉𝑇 . 𝑣 = 0. Then, the 

toroidal angle of swept curve point with respect to the rotation 

angle is defined as, 

 

𝜆 (𝜑) = 𝑡𝑎𝑛−1 [
𝑉𝑇 . 𝑤

𝑠𝑖𝑛(𝜑). (𝑉𝑇 . 𝑢)
] (11) 

 
After 𝜆 (𝜑) is determined, then, the coordinate of the swept 

curve point with respect to the rotation angle in the GCF is 

calculated as follows, 

 

𝐼 (𝜑)(𝑥𝐼 , 𝑦𝐼 , 𝑧𝐼) = [M] 𝑆𝑇 (𝜑𝐼; λ(φ)) (12) 

 

3. Effect of Helical Angle to the Tool Orientation and   

    Sept Surface 
 

The helical angle on the cutting teeth aimed to solve 

the drawback of straight cutting teeth in which the cutter tooth 

cuts the material with very strong effort from the beginning. 

This may cause vibration due to the shock effect and 

discontinuities of the load that give adverse effects to the 

quality of the machined surface. Considering this benefit, the 

helical angle is widely used to overcome this problem. In solid 

cutting tools, the helical angle (χ) is also called the lag angle. It 

makes the cutter tooth cut the material gradually. Application 

of the helical angle changes the geometry of the cut. In this 

section, the effect of the helical angle on the orientation of the 

cutting tool and the shape of the swept surface are discussed. 

 

3.1 Identifying the tool orientation angles 
 

In tools without a helical angle, the cutting tool and 

the cutter tooth have the same orientation. However, when the 

helical angle is introduced to the cutter tooth, the actual 

orientation of the cutter tooth is changed. The effect of the 

helical angle is illustrated in Figure 2a. By assuming a feedrate 

in the x-direction, then the helical angle changes the orientation 

of the cutter tooth by rotating the cutter tooth about the y-axis. 

The orientation of the cutter tooth at every rotation angle is 

defined by determining the coordinate of two representatives 

points, 𝑠𝜒(𝑥𝑠𝜒
,  𝑦𝑠𝜒

,  𝑧𝑠𝜒
) and 𝑐(𝑥𝑐 ,  𝑦𝑐, 𝑧𝑐). The representative 

points located on the cutter tooth are determined using a 

parametric equation of cylindrical surface. Point 𝑠𝜒 was 

obtained by rotating point 𝑠 about the Y-axis by the helical 

angle. Point 𝑠 is located arbitrarily on the cutter tooth when 𝜑 = 

0. Meanwhile point 𝑐 is a representative point that was set at 

the bottom of the cutter tooth. The coordinates of point 𝑠 and 

point 𝑐 in CCF are defined as: 
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Figure 2. (a) Orientation of the cutter tooth with respect to the rotation 

angle due to the effect of helical angle, (b) orientation of the 

cutter tooth. 

 

𝑠 =(0, 𝑟𝑚, 𝑟 + 5)  and 𝑐 = (0, 𝑟𝑚, 𝑟) (13) 

 

Then point 𝑠𝜒 and point 𝑐 as a function of rotation angle are 

calculated by transforming point 𝑠 and point 𝒄 about the Y-axis 

by the helical angle and about the Z-axis by the rotation angle. 

They are calculated as follows: 

 

𝑠𝜒 [

𝑥𝑠𝜒

𝑦𝑠𝜒

𝑧𝑠𝜒

] = 𝑅𝑜𝑡(𝑍, 𝜑) × 𝑅𝑜𝑡(𝑌, 𝜒) × [𝑠] (14) 

 

𝑠𝜒 [

𝑥𝑠𝜒

𝑦𝑠𝜒

𝑧𝑠𝜒

] = [
𝑐𝑜𝑠 𝜑 −𝑠𝑖𝑛 𝜑 0

𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 0

0 0 1

] 

                    × [
𝑐𝑜𝑠 𝜒 0 𝑠𝑖𝑛 𝜒

0 1 0

𝑠𝑖𝑛 𝜒 0 𝑐𝑜𝑠 𝜒
] × [

𝑥𝑠

𝑦𝑠

𝑧𝑠

] 

(15) 

 

𝑐 [

𝑥𝐶

𝑦𝐶

𝑧𝐶

] = 𝑅𝑜𝑡(𝑍, 𝜑) × [𝑐] = [
𝑐𝑜𝑠 𝜑 −𝑠𝑖𝑛 𝜑 0

𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 0

0 0 1

] [

𝑥𝑐

𝑦𝑐

𝑧𝑐

] (16) 

 

The orientation of the cutting tool relative to GCF due to the 

helical angle is determined by calculating the orientation of the 

cutter tooth relative to the X-axis and Y-axis (Figure 2b). They 

are calculated as follows: 

 

𝜃𝐴𝜒
= 𝜃𝑥 = 𝑡𝑎𝑛−1 (

𝑦𝑠𝜒
− 𝑦𝐶

𝑧𝑠𝜒

) (17) 

 

𝜃𝑦 = 𝑡𝑎𝑛−1 (
𝑥𝑠𝜒

− 𝑥𝐶

𝑧𝑠𝜒

)                     (18) 

 

𝜃𝐵𝜒
= 𝑡𝑎𝑛−1 (

(𝑥𝑠𝜒
− 𝑥𝐶) 𝑐𝑜𝑠 𝜃𝐴𝜒

𝑧𝑠𝜒

) 

        

       = 𝑡𝑎𝑛−1 (𝑡𝑎𝑛 𝜃𝑦 𝑐𝑜𝑠 𝜃𝐴𝜒
) 

(19) 

 
In five-axis milling, the orientation of the cutter can 

be set to any direction due to the complexity of the part surface. 

Two additional degrees of freedom allow the tool in five-axis 

milling to be rotated about the X-axis and Y-axis. The rotation 

angles about the X-axis and Y-axis are denoted by 𝜃𝐴 and 𝜃𝐵, 

respectively. These angles are used to set up the tool to the 

desired orientation. However, when a helical angle was applied 

to the cutter tooth, the orientation of the cutter tooth changed 

significantly. Therefore, the actual orientation of the cutter 

tooth with respect to GCF needs to be determined. Once again, 

it was determined using point 𝑠𝜒 and point 𝑐. In this case, point 

𝑠𝜒 and point 𝑐 are not only rotated by 𝜒, but also rotated by 𝜃𝐴 

and 𝜃𝐵. Then, Equations 14 and 15 change to become: 

 

𝑠𝜒 (𝑥𝑠𝜒
, 𝑦𝑠𝜒

, 𝑧𝑠𝜒
) = 𝑅𝑜𝑡(𝑋, 𝜃𝐴)  ×  𝑅𝑜𝑡(𝑌, 𝜃𝐵)

× 𝑅𝑜𝑡(𝑍, 𝜑) × 𝑅𝑜𝑡(𝑌, 𝜒). [𝑠] 
(20) 

 

𝑐(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶) = 𝑅𝑜𝑡(𝑋, 𝜃𝐴)  ×  𝑅𝑜𝑡(𝑌, 𝜃𝐵) 

                             × 𝑅𝑜𝑡(𝑍, 𝜑). [𝑐] 
(21) 

 
Once 𝑠𝜒 and 𝒄 were determined, then the actual cutter tooth 

orientations ( 𝜃𝐴𝜒
, 𝜃𝐵𝜒

) can be defined using Equations 17 

through 19. Finally the transformation operator to define the 

orientation and position of the cutter tooth when the tool has a 

helical angle with respect to 𝜃𝐴𝜒
and 𝜃𝐵𝜒

was defined as follows: 

 

[𝑀]ℎ = 𝑅𝑜𝑡 (𝑋, 𝜃𝐴𝜒
)  ×  𝑅𝑜𝑡 (𝑌, 𝜃𝐵𝜒

)                              

[𝑀]ℎ = [

𝑐𝑜𝑠 𝜃𝐵𝜒
0 𝑠𝑖𝑛 𝜃𝐵𝜒

𝑠𝑖𝑛 𝜃𝐴𝜒
𝑠𝑖𝑛 𝜃𝐵𝜒

𝑐𝑜𝑠 𝜃𝐴𝜒
−𝑠𝑖𝑛 𝜃𝐴𝜒

𝑐𝑜𝑠 𝜃𝐵𝜒

−𝑐𝑜𝑠 𝜃𝐴𝜒
𝑠𝑖𝑛 𝜃𝐵𝜒

𝑠𝑖𝑛 𝜃𝐴𝜒
𝑐𝑜𝑠 𝜃𝐴𝜒

𝑐𝑜𝑠 𝜃𝐵𝜒

] 
(22) 

 

 

3.2 The swept curve of helical cutting tool  
 

For a non-solid cutting tool, the helical angle not only 

changes the orientation of the cutter tooth, but also changes the 

shape of the swept surface. The helical angle causes the radius 

of the swept surface at the upper side to be different than the 

one at the lower side (Figure 3a). The radius of the swept 

surface equal to 𝑅 is only at the lowest side. Meanwhile at the 

upper side, the radius enlarges gradually as the tool axial height 

(l) increases. Therefore, the radius of the swept surface as a 

function of axial height, 𝑅𝜒(𝑙) , was defined by referring to 

Figure 3b as follows: 

 

𝜓 = 𝑡𝑎𝑛−1(((𝑟 − 𝑟 𝑐𝑜𝑠 𝜆) 𝑠𝑖𝑛 𝜒)/(𝑟𝑚 + 𝑟 𝑠𝑖𝑛 𝜆)) (23) 

 

𝑅𝜒 (𝜆) = (𝑟𝑚 + 𝑟 𝑠𝑖𝑛 𝜆)/ 𝑐𝑜𝑠 𝜓       (24) 

 

𝐺𝑇𝜒 (𝜑; 𝜆) = [

𝑅𝜒 sin 𝜑

𝑅𝜒 cos 𝜑

(𝑟 − 𝑟 cos 𝜆) cos 𝜒

]        (25) 

 

where 0 < 𝜆 < 90 and 𝜓 is the lag angle (Figure 2a). The lag 

angle is the rotation angle of 𝑠𝜒 relative to the rotation angle of 

𝑠. 

 
4. Path Intersection Point 

 

The scallop height (hs) was defined as the normal 

length between the path intersection point (PIP) to the part 

surface normal (𝑝𝒏).  The  PIP is an intersection point between  
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Figure 3. (a) Shape of swept surface using helical cutting tooth, (b) 

lag angle. 

 

the swept curve of the current cutting path and of the adjacent 

cutting path. The equations to obtain the path intersection point 

were derived by referring to Figure 4. Since the tool orientation 

was set without a tilt angle, the angle of the cutter contact point 

(𝜏), which is the deviation angle of the cutting tool relative to 

the surface normal, was similar. It also put the PIP in the middle 

of point 𝐶𝐶1 and 𝐶𝐶2. The distance of the intersection point to 

the cutter contact (CC) point, which is represented by 𝑚, and 

the angle of the CC point relative to the part surface are 

calculated by, 

 

𝑚 = |𝐶𝐶1 − 𝐶𝐶2|/2 (26) 

 

𝜏 =  𝑠𝑖𝑛−1(𝑚/𝑅1) (27) 

 

where R1 = √Rx
2 + Ry

2. Rx and Ry are the radii of the part 

surface at the instantaneous tool position calculated using the 

method of Kiswanto et al. (2015). In this method, the part 

surface normal (p
n
) was defined mathematically using a set of 

discrete normal vectors. At any instantaneous tool position, the 

part surface is defined as a combination of a convex, concave, 

flat, or sloped surface.  

Regarding the cutter orientation by the angle of CC 

point (τ), the coordinate of the swept point in CCF was mapped 

to LCF. The mapping coordinate system is performed using the 

following equation: 

 

IC [

xIC

yIC

zIC

] = [

1 0 0

0 cos τ −sin τ

0 −sin τ cos τ

]  × 𝐺𝑇𝜒 
 
(φIC; λIC ) (28) 

 

The coordinate of IC  (xIC
, y

IC
, zIC

) can be determined after the 

toroidal angle of PIP (λIC
) is defined. With respect to CCF, 

y
IC

= m. Since y
IC

was identified, λIC
 is defined by extracting 

Equation 28 only for y
IC

as follows: 

 

𝑦𝐼𝐶 = ((𝑟𝑚 + 𝑟 sin λIC ) cos𝜓𝑇 cosφIC) 

            cos 𝜏 − ((𝑟 − 𝑟 cos λIC ) cos 𝜒) 𝑠𝑖𝑛 𝜏 
(29) 

 

Three unknown variables exist in Equation 29, 

cos ψ
T
, λIC, and cos φ

IC
. Therefore, cos ψ

T
 and cos φ

IC
 need to 

 
 
Figure 4. Intersection point of adjacent tool path: (a) front view, (b) 

side view. 

 

be converted so that only λIC is the remaining unknown. By 

rearranging Equation 11, then cos φ
IC

 is expressed by:  

 

cos 𝜑𝐼𝐶 =

[
 
 
 √((𝑉𝑇 . 𝑢) sin λIC)

2
− ((𝑉𝑇 . 𝑤) cos λIC)

2

(𝑉𝑇 . 𝑢) sin λIC

]
 
 
 

 (30) 

 

 

Meanwhile cos ψ
T
 is obtained by rearranging Equation 23 to 

become: 

 

cos𝜓𝑇

=

[
 
 
 

(𝑟𝑚 + 𝑟 sin λIC)

√((𝑟 − 𝑟 cos λIC) sin 𝜒)
2
+ (𝑟𝑚 + 𝑟 sin λIC)

2
]
 
 
 

 
(31) 

 
After converting cos(𝜑𝐼𝐶) and cos𝜓𝑇 in Equation 29 by 

cos(𝜑𝐼𝐶) in Equation 30 and cos𝜓𝑇 in Equation 31, finally, 

Equation 29 yields a polynomial equation as follows: 

 

(𝑎2)𝑡8 + (2𝑎𝑏)𝑡7 + (2𝑎𝑐 + 𝑏2 + 𝑓2)𝑡6 

              +(2𝑎𝑑 + 2𝑏𝑐)𝑡5 

              +(2𝑎𝑒 + 2𝑏𝑑 + 𝑐2 − 𝑓2 + 2𝑓𝑔)𝑡4 

              +(2𝑏𝑒 + 2𝑐𝑑)𝑡3 + (2𝑐𝑒 + 𝑑2 − 2𝑓𝑔 + 𝑔2)𝑡2 

              +(2𝑑𝑒)𝑡 + (𝑒2 − 𝑔2) 

(32) 

 

 

where, 

 

𝑡 = sin λ𝐼𝐶 

 

𝑎 = [(𝑟2 cos2 𝜏)(1 − sin
2 𝜒) + 𝑟2(𝑉𝑇 . 𝑢)2 sin

2 𝜏] 
 

𝑏 = [2𝑟𝑚𝑟 cos2 𝜏] 
 

𝑐 =

[
 
 
 
 
 (𝑟2 cos

2
𝜏 sin

2 𝜒) (2 − (𝑉𝑇 . 𝑤)2)

+( cos2 𝜏)(𝑟𝑚
2 − 𝑟2(𝑉𝑇 . 𝑤)2

+ ((𝑉𝑇 . 𝑢)2)

(−𝑠2 − 2𝑟 𝑠 cos 𝜒 sin 𝜏 − 2 𝑟2 cos
2
𝜒 sin

2 𝜏)]
 
 
 
 
 

  

 

𝑑 = [−2𝑟𝑚𝑟 (𝑉𝑇 . 𝑤)2cos2 𝜏)] 

(33) 
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𝑒 = [(𝑉𝑇 . 𝑤)2 cos2 𝜏) (−2𝑟2 sin
2 𝜒 − 𝑟𝑚

2)] 
 

𝑓 = [
(2𝑟(𝑉𝑇 . 𝑢)2 cos 𝜒 sin 𝜏)(−𝑠 − r cos 𝜒 sin 𝜏)

+(2𝑟2 cos2 𝜏  sin
2 𝜒)

] 

 

𝑔 = [−2𝑟2(𝑉𝑇 . 𝑤)2 cos2 𝜏  sin2 𝜒)] 

 

Eight possibilities of 𝑡 can be generated by Equation 

32. Among them, however, only one 𝑡 was appropriate to define 

λ𝐼𝐶 for defining the PIP. The appropriate one was chosen using 

the following rules: a) 𝑡 must be within 0 and 1 and b)  λ𝐼𝐶 that 

gives 𝑦𝐼𝐶 = 𝑠 will be selected. Once λ𝐼𝐶 is obtained, the rotation 

angle can be determined using Equation 11. The coordinate of 

PIP, 𝐼𝐶  (𝑥𝐼𝐶 , 𝑦𝐼𝐶 , 𝑧𝐼𝐶), is defined by, 

 

𝐼𝐶  (𝑥𝐼𝐶 , 𝑦𝐼𝐶 , 𝑧𝐼𝐶) = [𝑀]ℎ 𝐺𝑇𝜒 (𝜑𝐼𝐶; λ𝐼𝐶) (34)  

 

Meanwhile cos ψ
T
 is obtained by rearranging Equation 23 to 

become: 
 

ℎ𝑠 = √𝐼𝐶
2 − 𝑝𝑛

2 (35) 

 

5. Implementation and Discussion 
 

All equations derived in this study were used to 

develop a program simulation using MATLAB. The proposed 

method in this study was called Grazing Toroidal 

Approximation (GTA). In this section, the applicability of the 

proposed method to calculate the scallop height was checked.  

In the first test, the drawback of previous analytical 

studies in using ellipse to represent the swept curve was proven. 

The  second  test  demonstrated the ability of GTA to calculate 

the scallop height. Finally, the accuracy of the proposed method 

was examined by comparing the scallop height obtained using 

Siemens-NX. 

 
5.1 Grazing toroidal approximation versus ellipse  

      curve approximation 
 

The proposed method was tested to check the 

applicability in generating the swept curve on the toroidal cutter 

as well as the influence of inclination angle to the shape of 

swept curve. In this test, a toroidal cutter with a diameter of 20 

mm and a minor radius of 5 mm was used as the cutting tool. 

The swept curve on the toroidal cutter is illustrated in Figure 

5a. Figure 5b shows a sample of the swept curve on the cutter 

when the inclination angle exists, which was then projected into 

2D. The projected swept curves for various inclination angle 

are depicted in Figure 5c. It can be seen that the shape of the 

swept curve was much influenced by the inclination angle. 

When the inclination angle was set to negative, the swept curve 

was located at the back of cutter tooth (Figure 5c). The toroidal 

angle of the swept curve tends to increase as the inclination 

angle increased. Figure 5b compares the shape of the projected 

curve and ellipse curve for various inclination angles. As 

mentioned in the Introduction, one of the drawbacks of the 

existing analytical method in scallop calculation is usually 

researchers use a parametric equation of ellipse to represent the 

swept curve. It can be seen that the shape of the projected curve 

was very dynamic and it cannot be approximated by an ellipse 

when the inclination is small. From a series of tests, it was 

found that the projected curve coincides precisely with the 

ellipse curve when the tool used a large inclination angle (>40o) 

(Figure 5d). However, in real machining a large inclination 

angle is avoided. Hence, it was proved that the ellipse curve 

approximation method for a toroidal cutter tends to produce an 

error. 

 

 
 

Figure 5. (a) Swept curve on toroidal cutter, (b) projected swept curve, (c) the shape of projected 

swept curve for various inclination angle, (d) comparison between projected swept curve 
and ellipse curve. 
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5.2 Implementation of the grazing toroidal  

      approximation 
 

In this section, the applicability of the proposed 

method was verified for a model test (Figure 6a). For 

simplifying the verification process, the test was performed 

using a large step-over so that a large scallop was obtained. In 

this test, a 15 mm step-over was selected. The machining 

conditions set in the test were feedrate 0.3 mm/tooth and 

spindle speed 5000 rpm. A two-tooth toroidal cutter with a 

helical angle of 10, a diameter of 20 mm, and a minor radius of 

5 mm were used as the cutting tool. Using the GTA, the shape 

of the machined surface could be generated (Figure 6b). From 

Figure 6a and Figure 6b, the shape of the machined surface 

generated using Siemens-NX resembled the shape of the 

machined surface generated using the program simulation. The 

shape of the scallop can also be seen in more detail in Figure 

6b. Moreover, the coordinate of the intersection point could be 

determined and hence the scallop height could be calculated. 

The scallop height generated using the GTA is presented in 

Figure 6c. The orientation of the cutting tool and the shape of 

the part surface were continuously changed during the 

machining process which caused the scallop height to fluctuate 

during the machining process. 

To ensure the ability of the method to calculate the 

scallop height, another test using a model was performed 

(Figure 7a). The milling conditions set in this test were feedrate 

0.3 mm/tooth and spindle speed 7000 rpm. The tool used in the 

test was a two teeth toroidal cutter with a diameter of 25 mm 

and a minor radius of 5 mm. The inclination angle was set to 

decrease gradually during the ramp-up machining process and 

then increase gradually during ramp-down milling. Using the 

same part model and cutting tool, the machining tests were 

performed using two different step-over values, 20 mm and 10 

mm. The shape of the machined surface generated using 

Siemens-NX is shown in Figure 7a. Using the program 

simulation, the shape of the machined surface could be 

generated (Figure 7b). The details of the scallop including the 

intersection point and the method to measure the scallop height 

are depicted in Figure 7c. The shape of the cut produced by 

program simulation that is shown in Figure 7b resembled the 

shape of the machined surface generated using Siemens-NX 

(Figure 7a). The scallop height for each CC point was 

calculated using the program simulation and the results for a 

two step-over are presented in Figure 7d. From this figure it can 

be concluded that increasing the step-over value increases the 

scallop height.  

 

5.3 Verification of the grazing toroidal approximation 
 

The proposed method was verified using the 

commercial software Siemens-NX. The shape of the part 

surface after machining using Siemens-NX is presented in 

Figure-6a. Although the shapes of machined surfaces were 

similar, the accuracy of the developed method had to be 

verified.  The  verification  was  carried  out  by  a  comparison  
 

 
 

Figure 6. (a) Model test, (b) machined surface generated using pro-
posed method, c) calculated and measured scallop height. 

 
 

 
 
Figure 7. (a) Model test generated using Siemens-NX, (b) machined surface generated using 

proposed method, (c) details of the scallop, (d) the scallop height for two step-over values. 
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between the scallop height generated by the proposed method 

and the measurements using Siemens-NX. The method to 

measure the cutter workpiece engagement in Siemens-NX was 

explained by Kiswanto et al. (2014a) and Kiswanto et al., 

(2015). 

Based on the tool path data (G-Code), the geometry 

of the swept volume can be constructed using Siemens-NX. 

The machined surface was then obtained by extracting the 

workpiece material using the swept volume model. After the 

machined surface was obtained, the coordinate of a point on the 

machined surface could be checked. Finally, the scallop height 

could be determined by calculating the distance between an 

intersection point on the machined surface to the designed 

surface. The scallop heights of all CC points for one tool pass 

were generated and the results are presented in Figure 6c. The 

graph shows that the deviation of the verification data is 

relatively small. In general, the errors were less than 7%.  

 

5.4 Test on the effect of helical angle and inclination  

      angle to scallop height 
 

The ability of the proposed method to check the effect 

of helical angle to the scallop was also performed. For the 

verification purpose, a part model was examined (Figure 8a). 

The machining conditions set in the test were feedrate 0.3 

mm/tooth, step-over value 10.49 mm, and spindle speed 5000 

rpm. The toroidal cutter with a diameter of 20 mm and a corner 

radius of 5 mm was used as the cutting tool. The inclination 

angle was set to decrease gradually during the ramp-up 

machining process. In this test, the scallop height produced by 

the toroidal tool was tested using five different helical angles: 

0, 10, 20, 30, and 40.  

The shape of the machined surface for one tool pass 

is presented in Figure 8b. The magnitudes of the scallop height 

for all variables used in the test are presented in Figure 8c. This 

figure demonstrates that the scallop height decreased gradually 

as the inclination angle decreased during the ramp-up process. 

The same result was also demontrated by a previous test (Figure 

7d). The scallop height decreased gradually as the inclination 

angle decreased during the ramp-up process (from CC point 0 

to CC point 12). Then, the scallop increased gradually as the 

inclination angle increased during the ramp-down process 

(from CC point 13 to 24). The scallop height during the ramp-

down process showed a larger trend than the ramp-up process.  

The helical angle significantly affected the scallop 

height (Figure 8c). At the same machining condition, the helical 

angle tended to decrease the scallop height. This effect occurred 

due to the change of the swept surface caused by the existance 

of the helical angle as discussed in previous section (Figure 3). 

Increasing the cutter diameter at the upper side caused the 

intersection between the cutting tool in two subsequent tool 

passes to produce a smaller uncut material.  

 

6. Conclusions 
 

In this study, the Grazing Analytical Approximation 

method was extended by taking into consideration the effect of 

a helical angle. This method was developed to generate a 

scallop height for a toroidal cutter during five-axis milling. 

Several important conclusions can be drawn. First, the test 

proved that the extended GTA is applicable to define the 

scallop height of a helical toroidal cutter in five-axis milling 

process. Second, a verification test was performed to compare 

the scallop heights obtained using the GTA with those 

measured using Siemens-NX which proved that the GTA is 

accurate. Third, the test also showed that increasing the helical 

angle decreases the scallop height. On the other hand, 

decreasing the inclination angle decreases the scallop height. 
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