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Abstract

The convective motion of two incompressible viscous fluids that are different in thermal conductivities, viscosities and
densities with heat transfer aspects in a rotating inclined channel, in which the pressure gradient is kept constant, is studied. The
two phases are occupied by two different homogeneous isotropic porous materials having different permeabilities. The flow is
steady, laminar and fully developed. Due to the inclusion of buoyancy forces, viscous and Darcy dissipation terms, the governing
equations are non-linear and coupled. The regular Perturbation Method is used to obtain their solutions. The effects of the
governing parameters such as rotation parameter, porous parameter, angle of inclination, Grashof number, ratio of heights, the
ratio of viscosities and the ratio of thermal conductivities on the fluid flow are discussed in detail. It is observed that an increase
in the Coriolis force incorporated through rotation parameter reduces the temperature and primary velocity of the flow.
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1. Introduction

The role of fluid flow and heat transfer in a system
containing saturated porous medium has drawn great mathe-
matical and practical interest for understanding the transport
processes occurring in several engineering systems such as
heat pipes, geothermal reservoirs and nuclear debris beds.
Various problems in the field have been studied by many
researchers, namely Beckermann, Viskanta, and Ramadhyani
(1988), Bian, Vasseur, Bilgen, and Meng (1996), Chauhan
and Rema (2005), Hayat, Husain, and Khan (2007), Rudraiah
(1988), Seddeek (2002), Sunil and Mahajan (2009). Prasad
(1991) studied convective flow interaction with temperature
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distribution in a composite channel partially filled with porous
medium. Kuznetsov (1998) investigated the Couette flow
between the fluid and porous layers. Rotating convection flow
through the porous medium has been studied by Krishna,
Prasad Rao, and Ramachandra Murthy (2002). Chauhan and
Rashmi (2012a) studied magnetohydrodynamic (MHD) flow
through a porous medium in a rotating channel taking Hall
currents into account. Heat transfer effects on rotating MHD
flow and rotating MHD Couette flow in a porous medium
with Hall currents has been analyzed by Chauhan and Rastogi
(2012). Lima, Assad, and Paiva (2016) have studied two-
phase magneto convection flow with heat transfer in an
inclined channel. Recently, Siva Reddy, Chamkha Ali, and
Anjan Kumar (2017) have analyzed the thermal-diffusion and
diffusion-thermo effects on MHD natural convection flow
through a porous medium in a rotating system. Even though
the study on convective flow and temperature distribution
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through porous medium with inclined geometry is useful in
many areas particularly in geophysical systems, there appears
to be a very limited number of researchers, notably Guven,
Avytac, and Ibrahim (2012), Malashetty, Umavathi, and Kumar
(2001), Simon and Shagaiya (2013), Sri Ramachandra Murty,
and Balaji Prakash (2016), Sri Ramachandra Murty, Balaji
Prakash, & Karuna Sree (2018). The purpose of the present
study is to analyze the effects of the parameters such as
inclination angle, rotation parameter and porous parameter
etc., on MHD convective two-layered flow and heat transfer
through an inclined porous medium in a rotating system. To
obtain realistic predictions, we have considered Brinkman
extended Darcy-Lapwood model following Malashetty, Uma-
vathi, and Kumar (2001).

2. Materials and Methods

The physical representation of the problem is shown
in Figure 1 It is composed of two inclined plates which are
parallel and infinite in length along x and z-directions.
Temperatures of the upper and lower plates, 1, ~and T,, are

kept constant. ‘@’ is the angle made by the inclined channel

with the horizontal plane. The regions ~h,<y<0 and
0<y<h are loaded with two different homogeneous isotro-

pic porous materials with different permeabilities. These two
phases are filled with two different incompressible viscous
fluids with different thermal conductivities, densities and
viscosities. The two fluids have constant transport properties
with laminar flow, and fully developed and are assumed to be
in a steady state. The flow in the channel is navigated by a

constant pressure gradient (;@pj and temperature gradient
X

AT=T, T,

T=Tw

Phase |

Porous medium

Porous medium

= Tw2

el

Figure 1. Physical configuration

With the angular velocity Q, the entire system is rotated about the y-axis. Then the equations of motion and energy for

Boussinesq fluids following Malashetty, Umavathi, and Kumar (2001) are:
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where u; and w; are the primary and secondary velocity distributions corresponding to x and z directions, the coefficient of thermal
expansion is i and Ti is the temperature. The no-slip condition is that the velocity must be vanishing at the wall. The

corresponding boundary and interface conditions on primary and secondary velocity distributions are:

u(h) =0, w(h)=0; u(0)=u,(0), w(0)=w,(0); u,(-h) =0, w,(-h,)=0 ™
ﬂ1%=ﬂz% and ﬂl%zﬂz% aty=0. 8

As the walls are maintained at varying temperatures Twi and Twz, the boundary conditions on T1 and T2 are:

dT, dT.
T1(0):T2(0)vT1(h1):Tw1l Tz(_hz):-rwzl KlT;: KZTyZ at y=0. (9)

In making these equations dimensionless, the following transformations are used

U W W, 3 (T, u Qh?
ﬂ:ul’i:uZl 1:W1’T2:W *_ﬂ &:yz*’{(T—Twz)}zg’Gr:gﬁlhl (TM TWZ)’Re:ulhl’ R2: 1

Uz a1 1 1 hl h2 (Twl _Twz) Vlz 1 Y
2 —2
K:ﬁ,h:h—z,n:p—z,b:&,Pr=7ﬂlcp,ﬂv=l,|:>: hL [@j,Ecziul ,m:ﬂ,kzﬁ
Ka by p1 B K1 Jk U, )\ ox C,(Ty—T.2) 'k,

Here | is average velocity.

Using the above transformations, the Equation (1) to Equation (6) transform to:

Region-1

d’u, Gr .

dyzl +R—e(S|n¢§)91—}fu1 =P +2R%w, (10)
d?w,

A = 2R, (11)
d2o du, ¥ (dw Y sl s

dy; +Prec ( dle +( dle +PrEca? (u? +w?)) =0 (12)
Region-11

d’u, Gr .

dy22 *Re bmnh?(Sing)@, — A°h’ku, = mh?P +2R?w, (13)

2

AW, a2hekw, = —2R%,

dy (14)

2 2 2

d 922 +prect (duz j +(dw2 J + PrEckh?A” 5(uz2 +w,%)=0

dy m | dy dy m (15)
The dimensionless forms of the boundary and interface conditions (8) and (9) change to:
Uy (1) =0, wy (1) =0, uy(0) =u,(0), w;(0) =w,(0), U, (-1) =0, w, (-1) =0, (16)
duy 1 dup and dw _ 1 dw, at y=0,

dy mh dy dy mh dy 17
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dg, 1 de, B
0, =1, 6,0)=6,(0), 6,(-1)=0, W Ko at y=0. (18)

Writing g1 = u1 +iw1 and gz = uz2 +iwz, Equation (10) and Equation (15) can be written in complex form as:

Region-I
%—yqzl —(sm ©)6,—-A’q, =P -2iR%q, (19)
2 a _
d 0;1 +prec| 0 9% +PrEci’(q,q,) =0. (20)
dy dy dy
Region-11
dzqz Gr 2 (i 21,2 _ 2 D2
ay? +%bmnh (sing)6, —A°h°kq, =mh°P -2iR°q,, @1)
d?e dg, dq )
dy22+PrECm{dyz dy2 +PrEc h?kA2(q, q,) =0 (22)
a, and g, are the complex conjugates of q: and gz respectively.
The respective boundary and interface conditions are:
- _ _obq, _ 1 dg _
ql(l)fO,ql(O)fqz(O),qz(—l)fo,d—;fﬁdi; at y=0, 23)
_ dg, 1 de, B
6,(1)=1,6,(0)=6,(0),6,(-1)=0,—= dy Kh dy at y=0, (24)

2.1 Solutions of the problem

The governing equations are coupled and non-linear. Here, we consider the Eckert number to be very small. Hence,

Pr.Ec (=¢) is also small and is used in the Perturbation Method. The solutions are considered in the following form

(6,6) = (i, Go) + (0, 6,) + ... (25)

where g, 8,, are solutions for the case when & is equal to zero and g,,, g,,are perturbed quantities related to ¢,,, 8., respectively.

Substituting the above solutions in equations (19) to (22) and equating the factors of identical existing powers of €, we obtain

equations of zeroth-order and first-order approximations for Region | and Region Il as follows:
Region |

Equations of zeroth-order approximation

d?

d;ho +—(SII’]¢)910 Azqm =P-2iR? Oio (26)
d?o
o 0 @7)

Equations of first-order approximation
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d? Gr .. .
d;/qzu + % (S|n¢)‘911 */12(3]11 = 72|R2q11

d?g, dqg dq —
dysz{( d)llOJ( d;o + A%y 0y =0

The conjugate of ¢ is aw

Region-11

Equations of zerot"-order approximation

d’q,,  Gr 2(qi 21,2 2 o2
Tyz +¥ bmnh*(Sing)8,, — A°h°kq,, = mh*P —2iR"q,,
d?6,, -0

dy?

Equations of first-order approximation

2

(1(17)(3221+%bmnh2 (Sing)6,, 7ﬂ,zh2kq21 = 72iR2q21
d29, K/|(dq, dq K a
dy51+m{£3§°ffﬂmhzkﬂz(q@qm)ﬂ

The respective boundary conditions given in Equation (23) and (24) will be changed to:

_0 99 _ 1 day

O (1) = 0,04, (0) = G (0), A5 (-1) =0, dy mh dy when y =0,
00 (1) =1 6 (0) = 0y (0), Oy (—1) = O, dd‘i’;o - d (‘;’/ when y =0,
4, (1) =0, qll(O)=q21(0),q21(_1):o,ddi;1=%ddi; when y =0,
911(1)=o,911(o)=921(0),921(_1):0,%=%dd%ﬂ when y =0,

It is noted that

CGho =Uyg +TWigr Qpp =Ugg +1Wog» Gy =Uyy +1TW, and Uy = Uy +iW,; -

375

(28)

(29)

(30)

(©)

(32)

(33)

(34)

(3%)

(36)

@7

(38)

Solutions of equations of zeroth-order approximation (26), (27) and (30), (31) applying boundary conditions (34) and (35) are:

_y+Kh
7 14Kh
(y+1)Kh
O =~ —
1+ Kh

Uy, =[(c,e™ +c,e" ™ )cos(E,y) + A, + AY]
Wy, = —[(ce®™ —c,el ™ )sin(E,y) — A, — A,Y]

Upo =[(cse ™ +c,e7™)cos(E,y) + Ag + AY]

(39)
(40)
(41)
(42)

(43)
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Woo = _[(Cge(Egy) —c,e ™)sin(E,y) — Ag — Aoyl (44)
Solutions of equations of first-order approximation (28), (29) and (32), (33) using boundary conditions (36) and (37) are:

6, ={C;Y +C; + Dy,e™ sin(E,y) + Dyee ™' sin(E,y ) + Dy ™ cos(E,y )+ Dy,e™ cos(E,y)

+ Dy ye™ sin(E,y )+ Dy, ye ™ cos(E,y) + Dy, ye™ cos(E,y)+ Dy, ye' ™ sin(E, )

+ D70e@EY) + D7160%81Y) + Dy2 2¢08(2E2y) + D7ay®+ Dray*+ Drsy?}

+i{D,SiN(2E, y) + Dy,e™sin(E, y) + D '™ cos(E,y) + D,,e" ™ sin(E,y)}

+i{ D™ cos(E, y) + D, ye™cos(E, y) + Dy, ye™Vsin(E, y)}

+i{D,,ye"™ cos(E,y) + D,, ye" **'sin(E, y)} (45)
Oy ={Cyy +Cy + I,8™ sin(E, Y )+ Jgee = sin(E,y) + Jgee ™ cos(E,y)+ J5;e™ cos(E,y)

+Jg¥e™ sin(E,y )+ Jgoye ™ cos(E,y)+ Jgye™ cos(E,y)+ Jg,ye = sin(E,y)

+ 3,075 +3,,67% + 3., 008 (2E,y) + J5y° + 5,y + 55y}

+i{J,4SIN(2E, ) + I, sin(E, y) + I, cos(E, y) + Jo,e = sin(E, y)}

+i{Je %V cos(E,y) + I, ye' =" cos(E, y) + J,, ye'=sin(E, y)}

+i{JgyeT ™ cos(E,y) + I, vem =Ysin(E,y)} o (46)

U, = (C7eE1y + CseiEly )COS(Ez y)— PSEZEly - I:)7672Ely + I:)75 + P76y + I:)77 y2 + P13 y3
+P,y* + P, Cos(2E,y) — P, sin(2E, y) + P,.e™ cos(E, y) + P,,e™ sin(E, )
+Pye ™ cos(E,y) + P,e ™ sin(E,y) + P,,e®’y cos(E, )
— P,,e™ysin(E,y) + P,e ™y cos(E,Y) + Rye ™y sin(E,y)
+PR,e ™ y? cos(E,y) + P ™ y*sin(E,y) (47)

Wy, = (coe ™ —c,e™ )sin(E,y) + Pe®™ + Be *™ + Py + Py + Pygy” + P y° + Pgy*
+ P, C0S(2E, Y) + P,y Sin(2E, y) + P,,e™ cos(E, Y) + P,,e™ sin(E,Y)
+P,,e”® cos(E,y) + P,e ™ sin(E,y) + P,,e®™ y cos(E, y)
—Pe®ysin(E,y) + P,e ™ ycos(E,y) + P,e ™ ysin(E,y)
+P.e ®y? cos(E,y) + P,e ™ y*sin(E,y) ' (48)

Uy, = (Cu8™” +Cpe ™" ) COS(E,y) — Fee™ — Fe ™™ + Fyg + Frgy + Fpy + Fy® + Fpy*
+F,, cos(2E,y) — Fy, SIN(2E, ) + F.e™ cos(E,y) + F,.e™ sin(E,y)
+F,e ™ cos(E,y) + F,e ™ sin(E,y) + F,,e¥’y cos(E,Y)
—F,e®ysin(E,y)+ F,e *'ycos(E,y) + F.e = ysin(E,y)
+F,,e ™ y?cos(E,y) + Fe = y*sin(E,y) (49)

W,, = (clze’E3y —cneEﬁy)sin(EAy) +Fe”™ + ™™ + Fy + Fy + Fy? + Ly + Fy*
+F,, COS(2E, y) + F,q SIN(2E, y) + Fee™ cos(E, y) + F,,e™ sin(E,y)
+F,e7% cos(E,y) + Fp,e ™ sin(E,y) + F,, cos(E,y)e™y
—Fe™ysin(E,y) + Fy, cos(E, y)e ™y + F,,e = ysin(E, )
+Fye ™ y?cos(E,y) + Fyee ™ y?sin(E,y) (50)



K. S. Chitturi et al. / Songklanakarin J. Sci. Technol. 42 (2), 371-382, 2020

For the sake of briefness, the constants involved in
Equations (41) - (50) are not given. Solutions for the equa-
tions of zeroth-order and first-order approximations from
Equations (26) - (33) are solved numerically by fixing the
parameters n=1.5, Re=5, b=1 and P = -5. As the solutions for
the equations of zeroth-order approximation are linear, the
graphs for temperature distribution are drawn only for first-
order approximations. This shows that the temperature dis-
tribution up to zeroth-order approximation is due to the con-
duction only. In the Figures 1-10, excluding the varying one,
all other parameters are taken from the set (¢, h, Gr, R, m, k,
K,2)=(30°1,5,1,0.5,0.5,1,2).

@

377

3. Results and Discussion

By solving the differential equations analytically,
approximate solutions for primary as well as secondary velo-
city and temperature distribution are acquired. Numerical
values of these solutions are computed for various sets of
parameters and the results are depicted graphically. Here we
note that when the rotation R=0, these results are in agreement
with that of Malashetty, Umavathi, and Kumar (2001).

Primary velocity distribution ‘u’ and secondary
velocity distribution ‘w’ for different values of the rotation
parameter R are shown in Figures 2(a) and 2(b) respectively.

(b)

Figure 2. Velocity distribution of R (a) Primary (b) Secondary
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Figure 3. Velocity distribution of K (a) Primary (b) Secondary
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Figure 4. Velocity distribution of Gr (a) Primary (b) Secondary
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It is concluded that ‘u’ reduces with increasing rotation. Since
R is the ratio of the Coriolis force and the viscous force, as R
increases the Coriolis force also increases. The increasing
Coriolis forces oppose the buoyancy force. Hence the velocity
will be decreased. It is also concluded that as the rotation
parameter R increases in (0, 1.6), the secondary velocity ‘w’
also increases, but outside the range as R increases, it de-
creases. The impact of the ratio on thermal conductivities K is
shown in Figures 3(a) and 3(b). It is noticed that by increasing
K there is a rise in the primary and secondary velocities.
Figures 4(a) and 4(b) represent ‘u’ and ‘w’ for varied values
of the Grashof number Gr. As Gr increases, both the velocities
also increase with the rise in the value of Gr. The impact of
the ratio of heights ‘h” on ‘u” and ‘w’ is depicted in Figures
5(a) and 5(b) respectively. The impact of increasing ‘h’ is to
enhance both the velocities. The impact of the inclination
angle ¢ on ‘v’ and ‘w’ is depicted in Figures 6(a) and 6(b)
respectively. As the buoyancy force enhances with an increase
in the inclination angle, both the primary as well as secondary
velocities increase with the increasing values of ¢. Figures
7(a) and 7(b) show the impact of the ratio of viscosities, ‘m’
on primary as well as secondary velocities, respectively. It is
observed that by increasing ‘m’ there is an increase both in the
primary and secondary velocities. Figures 8(a) and 8(b) repre-
sent the impact of porous parameter A on primary as well as

K. S. Chitturi et al. / Songklanakarin J. Sci. Technol. 42 (2), 371-382, 2020
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secondary velocities. It is observed that as the value of A
increases there is a decrease in both the velocities in two
regions because of the drag caused by the porous matrix on
the flow of the first region, which also affects the flow of the
free viscous fluid phase. Also, it is noticed that the effect of
greater A on the velocity is more pronounced when compared
to smaller A. Figures 9(a) and 9(b) indicate the impact of
permeability of porous medium k, showing that increased k
increases both the primary and secondary velocities.

The impact of the angle of inclination ¢ on tempera-
ture 0 is represented in Figure 10(a). The increased values of ¢
enhance the temperature because as ¢ increases the buoyancy
force also increases. Figure 10(b) indicates the effect of
permeability of the porous medium k on temperature 0,
indicating a proportionate increase in heat transfer. Figure
10(c) represents the impact of R on 0, the temperature dis-
tribution. It is observed that the temperature reduces with an
increase in rotation. As the rotation parameter R increases, the
temperature decreases because increasing rotation increases
the Coriolis force, which in turn opposes the buoyancy force.
Thus, the velocity will be decreased, leading to a reduction in
the temperature. Figure 10(d) indicates the effect of the ratio
of thermal conductivities K on temperature 0; the larger the
ratio of thermal conductivities, the greater the amounts of heat
transfer. Figure 10(e) shows the impact of Gr on temperature
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Figure 10(ii). Temperature distribution of (e) Gr, (f)y m, (g) h, (h) A

0. It is noticed that with an increase in Gr there is also an
increase in the temperature distribution. Figure 10(f) depicts
the impact of the ratio of viscosities m on the temperature
distribution. Increase in ratio of viscosities enhances the
temperature of the flow. Figure 10(g) exhibits the effect of the
ratio of heights h on the temperature 0; increasing the value of
h increases the temperature. The effect of porous parameter A
on temperature distribution 0 is shown in Figure 10(h). It is
observed that similar to its effect on the fluid flow, an in-
creasing value of A decreases the temperature field.

4, Conclusions

It is noticed that the impact of the porous parameter
is to retard the temperature, primary velocity and secondary
velocity in both phases. The increase in buoyancy force incor-
porated through Grashof number and the angle of inclination
enhances the temperature, primary velocity and secondary
velocity for both the layers. The increase in Coriolis force
incorporated through the rotation parameter reduces the tem-
perature and primary velocity of the flow in both phases. The
flow and thermal aspects of the fluids in the channel are
enhanced by an increase in the ratio of viscosities of the fluids
and the ratio of heights of the two phases. The results of the
two-layered flow and temperature distribution through an

inclined porous medium could be useful in recharge/discharge
problems like the flow of geophysical fluids, packed-bed
energy storage, etc.
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