
 

Songklanakarin J. Sci. Technol. 

42 (4), 897-909, Jul. - Aug. 2020 

 

 

 

Original Article 
 

 

Penalized spline estimator with multi smoothing parameters  

in bi-response multi-predictor nonparametric regression model  

for longitudinal data  
 

Anna Islamiyati1, Fatmawati2, and Nur Chamidah2* 

 
1 Department of Mathematics, Faculty of Mathematics and Natural Sciences,  

Hasanuddin University, Makassar, Sulawesi Selatan, 90245 Indonesia 

 
2 Department of Mathematics, Faculty of Sciences and Technology,  

Airlangga University, Surabaya, Jawa Timur, 60115 Indonesia 

 
Received: 29 October 2018; Revised: 14 May 2019; Accepted: 24 May 2019 

 

 

Abstract 
 

Penalized spline estimators that depend on a smoothing parameter is one type of estimator used in the estimation 

regression curve in nonparametric regression. The smoothing parameter is one of the most important components in the penalized 

spline estimator because it is related to the smoothness of the regression curve. In this paper, we determine the optimum number 

of smoothing parameters in a bi-response multi-predictor nonparametric regression model. Based on the result of the simulation 

study, we find that the optimum number of smoothing parameters corresponds to the number of predictor variables in each 

response. We also apply the estimated model to case of blood glucose levels in type 2 diabetes patients. The results of study show 

that there are different patterns of changes in blood glucose levels, both day and night, based on the length of care, the calorie 

diet, and the carbohydrate diet. 

 

Keywords: penalized spline estimator, multi-smoothing parameters, longitudinal data, blood glucose levels, type 2 diabetes 

patients

 

 
1. Introduction 

 

The smoothing spline estimators for estimating the 

regression curve of the nonparametric regression model have 

been introduced by Eubank (1999), Green and Silverman 

(1994), Wahba (1990), and Wang (1998). The smoothness of 

the curve is related to the smoothing parameter, symbolized 

by   (lambda). However, for the purposes of real data 

analysis, we need not only the smoothness of the curve, but 

also a smooth curve that can be interpreted visually. 

Therefore, in this paper, we develop the use of the penalized 

spline estimators proposed by Claenskens, Kribovokova, and 

Opsomer (2009), Eilers and Marx (1996), and Ruppert and 

 
Carrol (1997, 2000) to the penalized spline estimator with 

multi-smoothing parameters for longitudinal data.  

Some studies of the penalized spline estimator such 

as Durban, Harezlak, Wand, and Carrol (2005) have examined 

the individual curves of longitudinal data using penalized 

spline in the semi-parametric regression model. Yao and Lee 

(2006) proposed an iterative procedure of the penalized 

splines in principal component analysis. Lee and Oh (2007) 

used the penalized spline through M-type robust estimates to 

analyze the daily growth of ozone. Aydin and Yilmaz (2018) 

used modified spline estimators for nonparametric regression 

models with right-censored data, especially when the censored 

response observations are converted to synthetic data.  

There are several previous researchers who have 

studied data containing two or more correlated response 

variables. For cross-sectioned data, Soo and Bates (1996) used 

multi-response spline regression. Chamidah and Lestari 
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(2016), Lestari, Anggraeni, and Saifudin (2017), Lestari, 

Budiantara, Sunaryo, and Mashuri (2010, 2012), Lestari, 

Fatmawati, and Budiantara (2017), Lestari, Fatmawati, 

Budiantara, and Chamidah (2018), Lestari, Anggraeni, and 

Saifudin (2018), and Lestari, Chamidah, and Saifudin (2019) 

used natural smoothing spline estimators to estimate the 

regression curve of multi-response nonparametric regression 

models. Chamidah, Budiantara, Sunaryo, and Ismaini (2012) 

and Chamidah and Saifudin (2013) used local polynomial and 

kernel estimators, respectively. Chamidah and Rifada (2016) 

have studied local linear estimators in the bi-response 

semiparametric regression model for estimating median 

growth charts of children in Surabaya, Indonesia. Lestari, 

Fatmawati, Budiantara, and Chamidah (2018) estimated 

regression curves by using spline and kernel estimators. 

Chamidah, Fadilah, Tjahjono, and Lestari (2018) used local 

linear estimators for designing a growth reference chart of 

children. For longitudinal data, Wang, Guo, and Brown (2000) 

analyzed hormonal balance data involving two responses 

based on measurement time using smoothing spline estimator. 

Durban et al. (2005) estimated the individual curves of 

longitudinal data. Budiantara et al. (2009) discussed weighted 

spline estimator for longitudinal data. Islamiyati, Fatmawati, 

and Chamidah (2017) estimated the function of goodness of 

fit in criteria penalized spline on bi-response nonparametric 

regression for longitudinal data. Islamiyati, Fatmawati, and 

Chamidah (2018) analyzed bi-response case based on 

measurement time using a single penalty. In real cases 

involving time, additional predictors and assumed to influence 

the response, for example, in the case of genes of 

Glioblastoma cancer and blood glucose levels of diabetes 

studied using the parametric approach. Lee, Du, Wei, Hayes, 

and Liu (2012) and Lee and Liu (2012) used a Gaussian 

model in examining several types of genes in Glioblastoma 

cancer that were measured repeatedly by considering neuron, 

axon and synaptic transmission. Sun et al. (2016) examined 

the effect of fasting time on the day and night blood glucose. 

Festa et al. (2017) used the Cox regression model in the 

analysis of moderate and severe hypoglycemia based on age, 

sex, and race. Hettiaratchi, Ekanayake, Welihinda, and Perera 

(2011) studied glycemic and insulinemic responses to 

breakfast and the succeeding second meal in type 2 diabetes. 

Besides that, we may use bi-response multi-predictor 

nonparametric regression model in longitudinal data. The 

model is used to resolve bi-response and multi-predictor cases 

that could not be accurately analyzed through a parametric 

approach.  

The penalized spline estimation in the bi-response 

multi-predictor regression model consisting of the goodness of 

fit and the penalty function. The penalty function that we use 

in this paper is a quadratic penalty derived from the spline 

regression coefficient. We need to elaborate the penalty 

function of every response constructed from a set of 

predictors. In the additive of penalty, the number of 

smoothing parameters depends on the number of predictors 

involved in each response function. Also, the number of knots 

and order of the spline also play a role in determining the 

number of smoothing parameters that can be involved in the 

penalty function. For knots selection, we used the fixed 

selection method proposed by Ruppert (2002). Montoya, 

Ulloa, and Miller (2014) have tested the fixed selection 

method which gives the smallest GCV value. In simulation 

study, we examine the optimum number of smoothing 

parameters that can be involved in the penalty function of bi-

response multi-predictor model. We show that the number of 

smoothing parameters in each response for the bi-response 

multi-predictor nonparametric regression model is adjusted for 

the number of predictors. We can possibly reduce the number 

of smoothing parameters with computational considerations, 

but need further research in other simulation studies.  

Furthermore, the study of the theoretical develop-

ment of model estimation, including the description of the 

penalty additive in the penalized spline criterion of the bi-

response multi-predictor regression are described in the 

second section. In section 3, we present a simulation study of 

some functions of y1 and y2 with the number of samples and 

the correlation values varying. This simulation study shows 

the number of optimum smoothing parameters that should be 

involved in the penalty function. The optimization of the 

penalty additive in the penalized spline estimator is indicated 

by the minimum GCV value. Subsequently, the fourth section 

shows the application of multi-predictor bi-response model in 

type 2 diabetes data. These data were obtained from the 

hospital of Hasanuddin University South Sulawesi Indonesia. 

The factors involved in the model are daytime blood glucose 

(y1), nighttime blood glucose (y2), treatment time (t1), the 

calorie diet (t2), and the carbohydrate diet (t3). The last section 

contains the conclusion of this paper to be used as material for 

further research development. 

 

2. Model and Estimates 
 

2.1 The bi-response multi-predictor regression  

      nonparametric model  

 
The bi-response multi-predictor nonparametric 

regression model is a nonparametric regression model          

that contains two response variables. Given the data 

 1 2 1. 2., , , ,ij ij ijp ij ijt t t y y , for 1,2, ,i n , 1,2, ij m , as 

follow the bi-response multi-predictor nonparametric 

regression model for the longitudinal data: 
 

 . 1 2 ., , , , 1,2r ij r ij ij ijp r ijy f t t t r   .                                (1) 

 

Suppose that the model in (1) statisfies the additive 

properties of the predictor function, which in this case can be 

described as: 
 

 
     . 1 2 .r ij r ij r ij r ijp r ijy f t f t f t       .                (2) 

 

We assume random error 
. , 1,2r ij r 

 
as follows:
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i i j j
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     


   

   

  
  



  (3) 

 

2.2 The matrix of covariance 
 

The model in (2) is assumed to have correlations 

between responses and between repeated measurements on the 

same subject. This leads to the estimation of the nonpara- 
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metric regression model that uses the covariance matrix as a weight. We symbolize it by Ω  as follows: 

 
 

            

 

 

 

Based on the assumption in (3), we obtain the covariance matrix Ω as follows: 

 

 

,                           (4)  

where Ω  is a variance-covariance matrix of the first and the second response. In general, the matrix .r iΣ
 is the variance matrix 

in the r-response of the i-subject,  2 2 2

. , , ,r i i i idiag   Σ  for 1,2r  , 1,2, ,i n , and the matrix .rs iΣ
 is the covariance matrix 

in the r-response with the s-response of the i-subject,   . . . ., , ,rs i rs i rs i rs idiag   Σ  for 1,2r s  . 

 

2.3 Estimation of the nonparametric regression function 

 

The unknown functions      1 2, , ,r ij r ij r ijpf t f t f t  in equation (2) are estimated using the penalized spline estimator and 

can be expressed as follows: 
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



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 

 

 

 (5)  

Next, based on the equation (1), (2) and (5) we get: 

 

 
 (6) 

 

Equation (6) can be expressed for two spline functions as follows: 
 

 

 

              (7) 
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where                                                                               is the regression coefficient in the first and second responses. 

Next,         is the spline regression coefficient on the first response and predictor. In general, for 1,2r   and 1,2, ,h p , we 

obtained                                                                                                   Next,  1 1.1 1.2 1. pX X X X

 
is the matrix X in the first 

response,  2 2.1 2.2 2. pX X X X  is the matrix X in the second response. The matrix X on the response r and the predictor h 

is symbolized by 
.r hX  as follows:  

 

.   

 

 Based on (7), model (1) can be expressed in the form of the first response vector 

 and the second response vector   

  as follows:  

 

 
 (8) 

 

Based on (8), the bi-response multi-predictor nonparametric regression model for the longitudinal data based on the 

penalized spline estimator as given in (1) can be expressed in the following matrix notation: 
 

 

 
 

  

where                      is a vector of response variable that contains two response variables. The matrix X
 
is expressed as the matrix 

X in the first and the second responses that is 

1

2

 
  
 

X 0
X

0 X

. Next,                 is the spline regression coefficient vector in the first and the second responses. Next,                      

is a vector of random error in the first and the second responses.  

 

The estimator of bi-response multi-predictor nonparametric regression model can be obtained by carrying out the 

following penalized weighted least square (PWLS): 
 

 
 

The elaboration of the penalty function  
2

1

Mr r

r




  is given in section (2.4). Next, we get the parameter estimate of as follows: 
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                                                                                 (9) 

 

Finally, we obtain estimator of bi-response multi-predictor nonparametric regression model:  

 

.  

 

2.4 Additive penalty 

 

The penalty function in the bi-response multi-predictor nonparametric regression model is expressed as an additive 

function of the predictor as follows: 

 

2

1 1 2 2

1

M M Mr r

r

  


  . (10)  

2rg W  is the function of the response contained in the Sobolev Space, 
.r hc  is the derivative order in the predictor h, and the  

response r, that is   . . 1r h r hc q  , 
.r hq  is the spline order of the spline regression function of the predictor h and the response r. 

In the process of the penalty function, we use the definition of the delta dirac function in forming the truncated element 

of the spline function in each predictor with the number of points of knots as many as 
.1,2, r hv d .  The definition of delta dirac 

function in this paper is given as follows: 

 

 
 . .

.

.

;

0 ;

ijh r vh ijh r vh

ijh r vh

ijh r vh

t K t K
t K

t K


  
  



 . (11) 

 

The delta dirac function shift causes the formation of new functions, that is 
.r hg  where  truncated element is 

     
.. .

.

11 1

.1 .2 ., , ,
r hr h r h

r h

qq q

ijh r h ijh r h ijh r d ht K t K t K
 

  
   . Next, we get  

function 
.r hg   as follows: 

 . . . .. 0 ( 1) ( )B B B B
r h r h r h r hr h q q q dg        . (12) 

where  
0 .0B r h ,   .

. ..B
r h

r h r h

q

q r q h ijht ,  .

. .

1

( 1) .( 1) .1B ( ) r h

r h r h

q

q r q h ijh r ht K 

    ,  and  .

. . . . .

1

( ) .( ) .B ( ) r h

r h r h r h r h r h

q

q d r q d h ijh r d ht K 

    .  

Subsequently function 
.r hg  in equation (12) is derivated with respect to 1 2, , ,ij ij ijpt t t  with the higher order derivated 

. . 1r h r hc q  , the result is as follows:
 

 

 

       

. . .

. . . .

1

. .
. .( 1) .( ) . .

1

1 ! 1 !
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h
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r h r h
r h r q h r q d h r h r q v h

vijh ijh
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t t
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

  


 
      

 
 . (13)  

If     

.

.
. ..

1

1 !
r h

r h h

h

d

r h r hr q v h
v

q 




    is the derivative function 
.r hg  with respect to 

ijht  in the r-response and h-predictor of function 

with respect to 
ijht , then 

.r h  for 1,2, ,h p  is as follow: 

 

1 2
11 1

..1 .2
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1 2

pqq q
r pr r

r r r p

ij ij ijp
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t t t

   
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 . (14) 
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where            

..1 .2

.1 1 .2 2 .

1 2

.1 1 .2 2 .. 1 . 2 .
1 1 1

1 ! , 1 ! , , 1 !
r pr r

r r r p p

p

dd d

r r r p pr q v r q v r q v p
v v v

q q q  
  

  

           . 

 

Next, by taking integral over  ,h ha b  of squared (14), we get M1 and M2 as follows: 

      

 (15) 

 

 (16) 

 

where 1.1 1.2 1., , , pC C C
 
is a constant in the first response where 1.1 1.2 1.0, 0, , 0pC C C    and 2.1 2.2 2., , , pC C C

 
is a constant in the 

first response where 2.1 2.2 2.0, 0, , 0pC C C   . In general, the value of .r pC  for 1,2r   and 1,2, ,h p  is    
2

. . !r p r p p pC c b a  . 

If we elaborate the components in (15) and (16), for r = 1,2 then we get: 

 

 
 (17)  

 

where   is 

matrix D in the first response and predictor 1 to p. In general, for matrix D in the first response is 

  

 Furthermore, the penalty in the second response in equation (18) is obtained in the same way 

as in the first response. 

 

                  (18) 

 

where                                                                                                                        is matrix D in the second response and predictor 

1 to p. In general, matrix D in the second response is 

 

 

 

By substituting (17) and (18) into (10) we get: 

 

 

                              (19) 

where  

  

 Based on the penalty function in the first and second responses, it shows that the number of smoothing parameters in 

the first response is as many as predictors, so also in the second response. So, we have to consider in the bi-response multi-

predictor spline regression, that the smoothing parameters are involved in the model are as many as the predictors. We show the 

involvement of smoothing parameters in each function of some predictors through a simulation study in the third section. 
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3. Simulation Study 

 

In this section, we simulate a longitudinal data set consisting of two responses and three predictors using R-code. The 

purpose of this simulation study is to demonstrate the ability of the smoothing parameters in the penalty additive function in the 

bi-response multi-predictor nonparametric regression model. In general, the bi-response regression model is expressed as 

follows: 

 
 

 

where        is assumed to be normally distributed with                                            Matrix Ω  is a covariance matrix corresponding 

to (5) in which variance,  
2

2 sdij ijt   , where sd 0.1,10,30,50  in all cases in this simulation. We conduct a simulation study by 

defining the form of a predictor function for every response function, the number of observations, and the response correlation 

coefficient. The function used in this simulation for the first and the second responses are given in equations (20) and (21), 

respectively. 

 

   

 

 

2 22

1.1 1 1 1 1

1.2 2

1.3 3

0.5 2 1 2 2 2 4

sin 2 3 .

7 3sin 3

f t t t t

f t

f t





 
      


  


  

 (20)
 

    

   

 

 

2 22

2.1 1 1 1 1

2.2 2

2.3 3

0.5 2 1.5 2 4 4

sin 3 3

9 3sin 2

f t t t t

f t

f t





 
      


  


  

. (21) 

 

In this simulation study, we use functions (20) and (21) for different correlation values between the y1 and y2 responses, 

which are  ρ = ± 0.9, ρ = 0.8, ρ = 0.7, and ρ = ± 0.6 for 50 subjects, and each subject measured 3 to 10 times. We analyze the data 

on each correlation value by using three (according to the number of predictors) and one smoothing parameter based on the GCV 

criterion. The optimization of the number of smoothing parameters involved in the additive penalty function is shown through the 

boxplot. GCV values on three smoothing parameters  1 2 3, ,    are symbolized GCV_3, and the GCV value on one parameter 

smoothing   is symbolized GCV_1. We can see in the boxplot (Figure 1) that a minimum GCV value is obtained with the use 

of three smoothing parameters for each different response function in the case of two mutually correlated responses. The results 

of this simulation are briefly given in Table 1. 

     
 

                                   Figure 1.     (Different spline function form) Boxplot of GCV values of estimation with  (GCV_3) and  

                                                       (GCV_1) on every response with correlation between  responses ( 0.6,0.7,0.8,0.9r  ).                                
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                              Table 1.    The GCV value of the simulated data in the case of different functions with 2

ij ijt sd    
 

sd r  

n 

20 50 100 300 

       

50 -0.6 
1 2 3, ,    0.0207* 0.00609* 0.000512* 0.0000267 

  0.0237 0.01012 0.001034 0.0000652 

0.1 -0.9 
1 2 3, ,    0.000171* 0.0000514* 0.00000817* 0.00000127 

  0.00452 0.000182 0.0000116 0.00000143 

50 0.6 
1 2 3, ,    0.0139* 0.00279* 0.00272* 0.0000464 

  0.0162 0.00629 0.00494 0.0000978 

30 0.7 1 2 3, ,    0.0516* 0.000822* 0.000408* 0.0000218 

  0.0768 0.00126 0.00168 0.0000532 

10 0.8 
1 2 3, ,    0.00947* 0.000668* 0.000166* 0.0000111 

  0.0159 0.00226 0.000767 0.0000656 

0.1 0.9 
1 2 3, ,    0.00037* 0.0000189* 0.0000105* 0.00000101 

  0.0077 0.000179 0.0000276 0.00000108 
       

 

 

Furthermore, our simulations on several different 

subjects, i.e., n = 20, 50, 100, and 300. Every subject is 

measured 3 to 10 times. Boxplots of GCV values are shown in 

in Figure 2. We make boxplots of GCV values based on GCV 

values obtained through  iterations involving three and one 

smoothing parameters. The boxplot of GCV values shows that 

the value in GCV_3 is smaller than GCV_1. The difference of 

value of the GCV_3 and GCV_1 is very large for n = 20, 30, 

50, and 100. For the number of subjects n = 300 (± 3,000 

observed data), the value of GCV_3 is smaller than the value 

of GCV_1 and the difference is small. Therefore, the 

penalized spline estimator in bi-response multi-predictor 

nonparametric regression model must involve as many 

smoothing parameters as there are predictors in the function of 

each response in penalty additive functions.  

Based on the simulation study, we find that the 

number of smoothing parameters involved in the penalty 

function of the bi-response multi-predictor model is as many 

as the number of its predictors. We can use a smoothing 

parameter to reduce computing costs only when the sample 

size is large. 

 

 

 

 
 

                      Figure 2.     (Different spline function form) Boxplots of GCV values of estimation with 
1 2 3, ,    (GCV_3) and     

                                         (GCV_1) in every response with the number of subjects n = 20, 50, 100, 300. 



A. Islamiyati et al. / Songklanakarin J. Sci. Technol. 42 (4), 897-909, 2020  905 

4.  Application of Blood Glucose Level Data of Type  

     2 Diabetes Patients 

 

The pattern of change in blood glucose in type 2 

diabetes patients is analyzed through a bi-response multi-

predictor nonparametric regression model using a penalized 

spline estimator. Data of type 2 diabetes patients are obtained 

from the Hospital of Hasanuddin University, South Sulawesi, 

Indonesia. Blood glucose levels of patients that serve as 

response variables are daytime random blood glucose (y1) and 

nighttime random blood glucose (y2). Changes in blood 

glucose levels are measured by treatment time (t1), the total 

diet of calorie (t2), and the total diet of carbohydrate (t3). We 

have patients with varying treatment times, so that total 

observations were 418 measurements. 

The correlation coefficient between y1 and y2 is 0.6. 

It means that there is a correlation between daytime blood 

glucose and nighttime blood glucose for type 2 diabetes 

patients. In the first analysis, we use a partial analysis of each 

patient. The partial analysis performs on the time factor of 

treatment, the diet of calorie, and the diet of carbohydrate. The 

patterns of the daytime and the nightime blood glucose of type 

2 diabetes patients are shown in Figure 3. 

The result of the partial model estimates given in 

Figure 3 shows the different curve shapes of every predictor 

variable. The number of knots, the spline order and the 

smoothing parameters are chosen based on a minimum value 

of the GCV which is shown in Table 2. The obtained optimal 

order equals 2 in every predictor, whereas the number of knots 

and lambda values are different. The optimal lambda () 

values are also shown in Table 2. 

Further, type 2 diabetes data are analyzed using bi-

response nonparametric regression by using the penalized 

spline estimator. Based on Table 2, we obtain the minimum 

GCV value of order spline optimum, i.e., 2, and the number of 

smoothing parameters, i.e., 3 for every response. The number 

of knots is different in every predictor. The covariance matrix  

is involved in the estimation of the bi-response regression 

model as shown in Figure 4 and Figure 5. The covariance 

matrix is the result of the variance estimate of the errors of the 

first and the second responses. The GCV values of the 

regression  model  with  the  covariance  matrix  give  smaller  

 

 

 
 

Figure 3.     Estimation of the regression curve of the first response (above) and the second response (below). 



906 A. Islamiyati et al. / Songklanakarin J. Sci. Technol. 42 (4), 897-909, 2020 

                          Table 2.     Order, knots, and lambda values based on GCV values. 
 

Order Response Predictor Number of  knots Lambda () GCV 

      

1 

y1 

t1 6 0.06 

0.04423 

t2 2 1.16 

t3 2 0.22 
    

    

y2 

t1 5 0.47 

t2 4 0.10 

t3 2 0.53 
      

2 

y1 

t1 6 0.06 

0.04017 

t2 2 1.16 

t3 2 0.22 
    

y2 

t1 5 0.47 

t2 4 0.10 

t3 2 0.53 
      

3 

y1 

t1 6 0.06 

0.04079 

t2 2 1.16 

t3 2 0.22 
    

y2 

t1 5 0.47 

t2 4 0.10 

t3 2 0.53 
      

 

 

 
 

Figure 4.     Curve estimation of bi-response multi-predictor regression based on penalized spline of the first response 

 

 
 

Figure 5.      Curve estimation of bi-response multi-predictor regression based on penalized spline of the second response 
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error values.  The obtained GCV value is 0.04017.  Based on the analysis, we also find that the use of the covariance matrix 

together with the smoothing parameters is able to produce the smoothest estimator. 

Figure 4 and Figure 5 show changes in blood sugar levels day and night through a quadratic penalized spline model. 

Based on the time of treatment, we found seven patterns of changes in day blood sugar levels and six patterns of changes in night 

blood sugar levels. It tends to go up at a certain time, but goes down at other times. However, it increases at the end of treatment. 

The estimation of bi-response multi-predictor nonparametric regression model are given as follows: 

 

         

     

     

     

2 2 22

1 1 1 1 1 1

2 2 2 2

1 1 1 2 2

2 2 22

2 2 3 3 3

ˆ 506.22 294.25 239.26 315.59 5 287.14 9 295.68 13

169.76 17 408.61 21 87.61 25 27.42 64.23

29.08 1,185.83 165.38 1,761.67 2.48 70.61 115.23 133

70

y t t t t t

t t t t t

t t t t t

  

  

  

        

       

       

  
2

3.75 190.6t




     

     

     

2 2 22

2 1 1 1 1 1

2 2 22

1 1 2 2 2

2 2 2

2 2 2 3

ˆ 271.94 75.60 87.78 121.76 5.67 107.96 10.33 71.44 15

172.76 19.67 72.76 24.33 17.49 75.18 52.34 955.5

83.52 1,301 77.55 1,646.5 490.75 1,992 76.22 1

y t t t t t

t t t t t

t t t t

  

  

  

        

       

       

   

2

3

2 2

3 3

19.65

73.04 133 14.15 190.6

t

t t
 

   

 

 

Furthermore, type 2 diabetes patients in the hospital 

get a calorie diet from the hospital nutritionist. It is intended to 

decrease blood glucose levels to normal. The standard of 

calories has been determined by the nutritionists based on the 

condition of patients. Figure 4 shows that the effect of calorie 

diet on changes in patients blood glucose levels in the daytime 

tends to decrease quadratically. There are three patterns of 

changes, the first is blood glucose levels decreased, then 

slightly increased in the middle of treatment, and the last 

decreased after a strict the higher calorie diet. At night, there 

are five patterns of changes in blood glucose levels due to the 

calorie diet, and a high calorie diet can make the night blood 

glucose levels are decreased.  

Furthermore, the pattern of the daytime blood 

glucose levels based on the carbohydrate diet tends to fall, but 

in the last time at the tendency to rise when the carbohydrate 

diet is raised. At night, the carbohydrate diet is set by the 

hospital nutritionist has been able to decrease the blood 

glucose levels quadratically. Next, the regression curve of 

every predictor based on the estimation of the bi-response 

multi-predictor nonparametric regression model through the 

penalized spline estimator with the covariance matrix, is 

shown in Figure 4 and Figure 5. 

The approximate accuracy of the bi-response multi-

predictor regression model by using the penalized spline 

estimator on blood glucose data of type 2 diabetes patients 

through the error values is shown in the box-plot in Figure 6. 

The box-plot shows that the error of the estimated bi-response 

multi-predictor model has the middle value close to zero. 

 

 
 

Figure 6. Boxplot of error values of estimation bi-response regres-

sion model using a penalized spline, (left) the first res-

ponse, and (right) the second response 

 

5. Conclusions 

 

The results show that the smoothing parameters 

working simultaneously with the knots and weighted matrix 

are tools in generating an efficient regression model. Also, we 

find that the number of smoothing parameters involved in 
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additive penalties is equal to the number of predictors. The 

performance of one smoothing parameter is able to give a 

minimum GCV value on estimation of bi-response multi-

predictor regression model when the sample size is large. In 

the data analysis of blood glucose level of type 2 diabetes 

patients, we show the pattern of changes in blood glucose 

levels of patients that can provide an overview of changes in 

blood glucose level fluctuations of patients with type 2 

diabetes.  
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