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Abstract 
 

Aggregate production planning when operating time, costs, customer demand, labor level, and machine capacity are 

uncertain is studied. This study optimizes the aggregate production plan, yielding the minimum total costs by using an integrated 

fuzzy multi-objective linear model with 𝛼-Cut analysis. The proposed integrated approach simultaneously minimizes the most 

possible value of the total costs, maximizes the possibility of obtaining the lowest total costs, and minimizes the possibility of 

obtaining higher total costs as multiple objectives. Then, the α-Cut analysis is introduced to ensure decision makers that the outcome 

satisfies their preferences based on a specified minimum allowed satisfaction value (α). The outcome of the study can show a 

possible range of total costs, yielding an optimal and acceptable plan under uncertainty. 

 

Keywords: aggregate production planning, possibilistic linear programming, fuzzy goal programming, α-cut analysis

 

 

1. Introduction 
 

Effective Aggregate Production Planning (APP) is 

used to meet customer requirements and yields the minimum 

total costs; production cost and costs of changes in labor levels. 

APP is a strategy by which a decision maker determines the 

appropriate production, inventory, and workforce level over a 

planning horizon. 

APP can fall into two categories in terms of the 

number of objective functions. First, a single objective opti-

mization problem only has one objective or all different 

objectives can be combined into one objective. This problem 

provides a single solution instead of a set of alternative solu-

tions to decision makers. Karmarkar and Rajaram (2012) 

developed APP with capacity constraints to maximize the total 

profit. Hossain, Nahar, Reza, and Shaifullah (2016) studied 

APP of multiple products under demand uncertainty by con-

sidering wastage cost and incentives. Their aim is to minimize  

the  total  relevant  costs  under  imprecise  demand, production 

 
capacity, workforce, inventory control, wastage reduction, and 

proper incentive for the workforce. 

Second, a multi-objective optimization problem has 

interactions among different objectives, yielding a set of com-

promised solutions. Baykasoglu and Gocken (2010) proposed 

ranking methods of fuzzy numbers and tabu search for solving 

the fuzzy multi-objective APP problem based on triangular 

fuzzy numbers. Tohidi and Razavyan (2012) studied an L1-

norm method for generating all efficient solutions of the multi-

objective integer linear programming problem. Multi-objective 

APP in a green supply chain was proposed by Entezaminia, 

Heydari, and Rahmani (2016) to minimize the total losses and 

maximize the total environmental scores of products. 

In practice, the main problem that decision makers 

have to face, which consequently impacts the overall per-

formance of their aggregate production planning, is uncer-

tainty. It is derived from a lack of or misleading information 

from two sources: (1) Environmental uncertainty due to a 

supplier’s performance and a customer’s behavior in terms of 

supply and demand, and (2) System uncertainty due to the 

unreliability of operations and processes inside an organization 

(Cha-ume & Chiadamrong, 2012). To handle these uncertain 

problems, a theory of fuzzy sets can be introduced to represent 

the uncertainty. Bellman and Zadeh (1970) are among the 
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pioneers to propose a Fuzzy Goal Programming (FGP) model 

for decision making in an uncertain environment, and later it 

was developed into multi-objective linear programming by 

Zimmermann (1978). 

Possibilistic Linear Programming (PLP) is another 

approach that can be used to incorporate fuzzy data based on 

the triangular or trapezoidal distribution. Wang and Liang 

(2005) proposed PLP for the APP problem, which yields an 

efficient APP compromise solution and overall degree of 

decision maker satisfaction with determined goal values. 

Özgen, Önüt, Gülsün, Tuzkaya, and Tuzkaya (2008) proposed 

a two-phase PLP methodology for multi-objective supplier 

selection and order allocation problems. Kabak and Ülengin 

(2011) applied the PLP approach to supply chain networking 

decisions for maximizing the total profit of an organization. 

Biswal and Barik (2016) also developed the PLP with known 

means and variances of right hand side parameters of the 

constraint.  

Based on PLP, in this study, the objective function of 

minimization of the total costs is divided into three sub 

objective functions: minimizing the most possible total costs, 

maximizing the possibility of obtaining the lower total costs, 

and minimizing the risk of obtaining the higher total costs. Even 

though the PLP model can help to find the optimal solution of 

each objective function, it lacks the ability to compromise the 

optimal solution of all objective functions. To handle this issue, 

integrating PLP with FGP is proposed in this study to help 

decision makers obtain a better outcome. 

FGP is an extension of conventional programming 

where the aspiration level of each objective is unity. The 

achievement of the highest degree (unity) of the fuzzy goals of 

a problem is to solve multi-objective problems with imprecisely 

defined model parameters in a decision-making environment. It 

is sometimes called fuzzy mathematical programming with 

vagueness, where there is flexibility in the given target values 

of objective functions and/or the elasticity of constraints. There 

are two methods of FGP: Zimmermann and Weighted Additive 

(WA) are chosen to optimize fuzzy multi-objective APP. 

Zimmermann’s method is FGP method that treats fuzzy goals 

and fuzzy constraints equivalently. However, a symmetric 

model may not be appropriate for multi-objective decision-

making problems because the importance of the objectives can 

be different for each decision maker. Thus, the WA method is 

introduced to optimize the problem in which different weights 

can be applied to various objectives based on decision-makers’ 

preferences.  

Taghizadeh, Bagherpour, and Mahdavi (2011) also 

developed an interactive fuzzy goal programming approach for 

solving multi-period multi-product production planning 

problem in an imprecise environment. Lachhwani and Poonia 

(2012) studied a mathematical solution of the multilevel 

fractional programming problem with a FGP. They solved 

multilevel fractional programming problems in a large hierar-

chical decentralized organization using the FGP approach. 

Biswas and Kurmar (2016) employed a FGP approach for solid 

waste management under multiple uncertainties. They deve-

loped the FGP model to minimize the net system cost of sorting 

and transporting the wastes and to maximize the revenue 

generated from different treatment facilities.  

Biswas and De (2016) developed an FGP model for 

municipal solid waste management to minimize the net system 

cost of sorting and transporting the wastes and to maximize the 

revenue generated from different treatment facilities.  Mokhtari 

and Hasani (2017) adopted FGP and designed heuristic algo-

rithms to optimize a multi-objective model for a cleaner 

production-transportation planning problem in manufacturing 

plants. Saxena et al. (2018) applied the FGP to generate supply 

chain strategic plan of tyre remanufacturing under uncertainty 

and group decision making environment.  

𝛼-Cut analysis can be introduced to guarantee that 

the satisfactions of fuzzy goals and fuzzy constraints of 

decision makers is higher than a minimum allowed value (𝛼). 

It is solved by the fuzzy multi-objective linear programming 

model to enhance the satisfaction of fuzzy objectives and 

constraints of the weightless method (Zimmermann’s method). 

Bodjanova (2002) introduced the concept of 𝛼-Cut analysis that 

is important in the relationship between fuzzy sets and crisp 

sets. Amir and Leila (2011) also used the 𝛼-Cut analysis to 

improve the applicability of the earned value techniques under 

real-life and uncertain environments.  

Yang, Li, and Han (2016) proposed an improved α-

cut approach to transform a fuzzy membership function into a 

basic belief assignment, which provides a bridge between 

the fuzzy set theory and Dempster–Shafer evidence theory. 

Purba et al. (2017) developed an α-cut method based impor-

tance measure to evaluate and rank the importance of basic 

events for criticality analysis in Fuzzy Probability based Fault 

Tree Analysis (FPFTA).  

The contribution of this study is to extend the concept 

of PLP to the fuzzy multi-objective linear model. Rather than 

knowing and optimizing only the most likely total costs of a 

plan, the proposed approach can optimize and realize the 

possible lower total costs and the possible higher total costs as 

a possible range of the total costs. This information is important 

for decision makers. They can prepare for possible scenarios 

including both optimistic and pessimistic cases and take a 

necessary action for future uncertainty. In addition, the pro-

posed hybrid approach also guarantees that the achievement of 

all objectives is satisfied and acceptable to the decision makers. 

This is important since failure to satisfy any objective by the 

decision makers can lead to an unacceptable result. The 

obtained production plan would be optimal (subject to various 

uncertainties) and would satisfy all the objectives and con-

straints (of the decision makers). 

The remaining parts of this paper are organized as 

follows. The problem description, notation, and formulation are 

described in Section 2. Section 3 proposes the methodology. A 

case study is demonstrated in Section 4, and the outcomes are 

presented in Section 5. Lastly, Section 6 is the conclusion of the 

study. 
 

2. Problem Description 
 

A company wants to establish an APP that consists 

of N types of products over a horizontal time T under uncertain 

customer demand, operating costs, labor level, and machine 

capacity. 

 

2.1 Nomenclature 
 

To formulate the mathematical model, the symbol ⁓ 

refers to ambiguous data that are used in this study.  

 

https://www.sciencedirect.com/topics/engineering/fuzzy-membership-function
https://www.sciencedirect.com/topics/engineering/fuzzy-set-theory
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2.1.1 Indexes 
 

N Types of products (n = 1, …, N) 

T Periods (t = 1, …, T) 

J Number of fuzzy goals (j = 1, …, J) 

I Number of fuzzy constraints (i = 1, …, I) 

 

2.1.2 Parameters 
 

𝐷𝑛𝑡̃ Forecast demand of product n in period t (units) 

𝑟𝑛𝑡̃ Cost of regular time production per unit of product n 

in period t ($/unit) 

𝑜𝑛𝑡̃ Cost of overtime production per unit of product n in 

period t ($/unit) 

𝑠𝑛𝑡̃ Cost of subcontracting per unit of product n in period 

t ($/unit) 

𝑖𝑛𝑡̃ Cost of inventory per unit of product n in period t 

($/unit) 

𝑏𝑛𝑡̃ Cost of backordering per unit of product n in period t 

($/unit) 

ℎ𝑡̃ Cost of hiring per worker in period t ($/person-hour) 

𝑓𝑡̃ Cost of firing per worker in period t ($/person-hour) 

𝐿𝑡𝑚𝑎𝑥̃ Maximum labor level available in period t (person-

hours) 

𝑀𝑡𝑚𝑎𝑥
̃  Maximum machine capacity available in period t 

(machine-hours) 

𝑀𝐻𝑛𝑡̃ Machine’s hour usage per unit of product n in period 

t (machine-hours/unit) 

𝑊𝑆𝑡𝑚𝑎𝑥 Maximum warehouse space available in period t 

(ft2/unit) 

𝐿𝐻𝑛𝑡 Labor’s hour usage per unit of product n in period t 

(person-hours/unit) 

𝑤𝑠𝑛𝑡 Warehouse space for product n in period t (ft2/unit) 

 

2.1.3 Decision variables 
 

𝑅𝑄𝑛𝑡 Regular time production quantity of product n in 

period t (units) 

𝑂𝑄𝑛𝑡 Overtime production quantity of product n in period 

t (units) 

𝑆𝑄𝑛𝑡 Subcontracting quantity of product n in period t 

(units) 

𝐼𝑄𝑛𝑡 Inventory quantity of product n in period t (units) 

𝐵𝑄𝑛𝑡 Backorder quantity of product n in period t (units) 

𝐻𝑡 Number of workers hired in period t (person-hour) 

𝐹𝑡 Number of workers fired in period t (person-hour) 

𝑑𝑛𝑡 Quantity of product n in period t that satisfies the 

customer demand (units) 

 

2.1.4 Related notations 
 

𝑍 Total costs 

𝜆 Overall satisfaction 

𝑤1
𝑝

 Pessimistic value’s weight 

𝑤2
𝑚 Most likely value’s weight 

𝑤3
𝑜 Optimistic value’s weight 

𝜆𝑗  Fuzzy goals (j = 1, …, J) 

𝛾𝑖 Fuzzy constraints (i = 1, …, I) 

µ𝑗(𝑥) Linear membership function of the fuzzy objective  

µ𝑖(𝑥) Linear membership function of the fuzzy constraint  

𝑤𝑗  Coefficient of compensation of the fuzzy objective    

(j = 1, …, J) 

𝛽𝑖  Coefficient of compensation of the fuzzy constraint   

(i = 1, …, I) 
 

2.2 Problem formulation 
 

2.2.1 Objective function 
 

Minimizing the total costs is a common objective 

function of the APP problem. However, the coefficients of 

costs can be imprecise due to incomplete information. The 

objective function is proposed as: 

 

Minimize total costs = 

∑ ∑  (Regular time production cost 𝑇
𝑡=1

𝑁
𝑛=1 + Overtime 

production cost + Subcontracting cost + Inventory cost + 

Backordering cost) + ∑ (Hiring cost 𝑇
𝑡=1  + Layoff cost) 

 

Min 𝑍 = ∑ ∑ (𝑟̃𝑇
𝑡=1

𝑁
𝑛=1 nt RQnt + 𝑜̃nt OQnt + 𝑠̃nt SQnt+𝑖̃nt IQnt + 𝑏̃nt 

BQnt) + ∑ (𝑇
𝑡=1 ℎ̃t Ht + 𝑓t Ft )                                (1) 

 

2.2.2 Constraints 
 

1) Carrying inventory 
 

Demand = Previous Ending Inventory – Previous Backordering  

                  units + Regular Time Production Units + Overtime    

                  Production Units + Subcontracting Units – Current  

                  Ending Inventory + Current Backordering units 
 

𝐷̃nt = 𝐼𝑄𝑛𝑡−1 − 𝐵𝑄𝑛𝑡−1 + 𝑅𝑄𝑛𝑡 + 𝑂𝑄𝑛𝑡 + 𝑆𝑄𝑛𝑡 − 𝐼𝑄𝑛𝑡 +
𝐵𝑄𝑛𝑡                           ∀𝑁, ∀𝑇              (2) 

        

2) Labor level 
 

Previous Labor Level + Hiring – Firing - Current Labor Level 

= 0 

 

∑ 𝐿𝐻𝑛𝑡−1
𝑁
𝑛=1 (𝑅𝑄𝑛𝑡−1 +𝑂𝑄𝑛𝑡−1) + 𝐻𝑡 − 𝐹𝑡 −

∑ 𝐿𝐻𝑛𝑡(𝑅𝑄𝑛𝑡 +𝑂𝑄𝑛𝑡) = 0
𝑁
𝑛=1               ∀𝑇                    (3) 

 

Current Labor Level ≤ Maximum Available Labor Level 

∑ 𝐿𝐻𝑛𝑡̃(𝑅𝑄𝑛𝑡 +𝑂𝑄𝑛𝑡) ≤ 
𝑁
𝑛=1 𝐿̃tmax              ∀𝑇                  (4) 

 

3) Machine capacity 
 

Hours of Machine Usage ≤ Maximum Available Machine 

Capacity  

∑ 𝑀𝐻̃𝑁
𝑛=1 nt(𝑅𝑄𝑛𝑡 +𝑂𝑄𝑛𝑡) ≤ 𝑀̃ tmax              ∀𝑇                  (5) 

 

4) Warehouse capacity 
 

Warehouse Space Usage ≤ Maximum Available Warehouse 

Space 

∑ 𝑤𝑠𝑛𝑡𝐼𝑄𝑛𝑡 ≤ 𝑊𝑆𝑡𝑚𝑎𝑥
𝑁
𝑛=1                                       ∀𝑇               (6)  

 

5) Non-negativity 
 
R𝑄𝑛𝑡, 𝑂𝑄𝑛𝑡, 𝑆𝑄𝑛𝑡, 𝐼𝑄𝑛𝑡, 𝐵𝑄𝑛𝑡, 𝐻𝑡, 𝐹𝑡 ≥ 0       ∀𝑁, ∀𝑇                (7) 
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3. Solution Methodology 
 

Figure 1 presents the proposed integrated approach to 

optimize the APP under uncertainty. Having formulated the 

objective functions and all constraints, the first step is to 

defuzzify the fuzzy data to crisp values either by the weighted 

average method or the fuzzy ranking method. PLP is the second 

step, to account for fuzzy operating costs. It is used to convert 

the fuzzy objective function into the constant objective function 

by dividing the main fuzzy objective function into three cases: 

most likely, optimistic, and pessimistic. Then, the Multi-

Objective Mixed-Integer Linear Programming (MOMILP) 

model is used to find the boundaries of each objective function 

for both the Positive Ideal Solution (PIS) and the Negative Ideal 

Solution (NIS). Next, Zimmermann’s and the WA methods are 

used to calculate the overall satisfaction level of the APP. The 

result of Zimmermann’s method is set as a benchmark of the 

optimal solution, in which all objective functions have equal 

weight (weightless). In contrast, the WA method is an 

asymmetric model that allows decision makers to assign the 

weights of each objective based on their experiences. It is used 

to find the optimal solution, in which different objective 

functions can have different importances. Finally, α-Cut 

analysis is introduced to help decision makers increase the 

satisfaction level of each objective to meet their specified 

minimum satisfaction value (α). 

 
 

 
 

Figure 1.     Flow-chart of solution methodology 

is used to calculate 

satisfaction level (𝜆). 

Possibilistic Linear Programming (PLP) 

Minimizing the most likely total costs (Min 𝑍1 = 𝑍𝑚) 

) 

Maximizing the possibility of obtaining the lower total costs 

(Max 𝑍2 = (𝑍𝑚 − 𝑍𝑜)) 

Minimizing the risk of obtaining the higher total costs (Min 𝑍3 = 

(𝑍𝑝 − 𝑍𝑚)) 
 

Capture the imprecise 

operating costs 

Objective functions and constraints 

Defuzzification methods 

1. Weighted average method 

 Defuzzify customer demand and maximum 

labor level 

2. Fuzzy ranking method 

 Defuzzify maximum machine capacity 

Phase 1: Multi-Objective Mixed-Integer Linear Programming model 

Calculate Positive Ideal Solution (PIS) and Negative Ideal 

Solution (NIS) of all objective functions that are set as 
boundaries. 

Phase 2: Fuzzy Goal Programming model 

1. Zimmermann’s method 

 Symmetric model (weightless) 

 Benchmark of the optimal solution 

2. Weighted Additive method 

 Asymmetric model (can assign weights 

based on their importance) 

𝛼-Cut analysis 

to ensure that the satisfaction degree for fuzzy goals 

and fuzzy constraints is not less than the decision-
makers’ minimum allowed satisfaction value (α). 
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3.1 Defuzzification methods 
 

A method that can be used to convert imprecise data 

to crisp data is called a “defuzzification method”. The weighted 

average and fuzzy Ranking methods are two well-known 

methods for defuzzifing fuzzy numbers. Fuzzy constraints that 

have fuzzy data on one side of an equation can be defuzzified 

by the weighted average method (Equation (2)). In contrast, 

fuzzy constraints where both sides of an equation contain fuzzy 

data can be defuzzified by the fuzzy ranking method (Equations 

(4) and (5)). 

 

3.1.1 Weighted average method 
 

Referring to Equation (2), the demand (𝐷𝑛𝑡̃) has 

fuzzy values under the triangular distribution and can be 

defuzzified by applying the weighted average method as 

follows: 
 

𝐼𝑄𝑛𝑡−1 − 𝐵𝑄𝑛𝑡−1 + 𝑅𝑄𝑛𝑡 + 𝑂𝑄𝑛𝑡 + 𝑆𝑄𝑛𝑡 − 𝐼𝑄𝑛𝑡 + 𝐵𝑄𝑛𝑡 =
 𝑤1

𝑝
𝐷𝑛𝑡
𝑝
+ 𝑤2

𝑚𝐷𝑛𝑡
𝑚 + 𝑤3

𝑜𝐷𝑛𝑡
𝑜                                                                     (8) 

 

where 𝑤1
𝑝

, 𝑤2
𝑚 , and 𝑤3

𝑜 represent the weights of pessimistic, 

most likely, and optimistic values of the imprecise demand, 

respectively. The weights 𝑤1
𝑝

, 𝑤2
𝑚, and 𝑤3

𝑜can be determined 

by decision makers based on their experience and  𝑤1
𝑝
+ 𝑤2

𝑚 +
𝑤3
𝑜 = 1. 

 

3.1.2 Fuzzy ranking method 
 

The FR method can also be used to defuzzify fuzzy 

data that does not require weight allocation to prioritize the 

importance of data as in Equation (5). The fuzzy ranking 

method is introduced as follows: 

 

∑ 𝑀𝐻𝑛𝑡
𝑝𝑁

𝑛=1 (𝑅𝑄𝑛𝑡 +𝑂𝑄𝑛𝑡) ≤ 𝑀𝑡 𝑚𝑎𝑥
𝑝

                        (9) 

∑ 𝑀𝐻𝑛𝑡
𝑚𝑁

𝑛=1 (𝑅𝑄𝑛𝑡 + 𝑂𝑄𝑛𝑡) ≤ 𝑀𝑡 𝑚𝑎𝑥
𝑚                   (10) 

∑ 𝑀𝐻𝑛𝑡
𝑜𝑁

𝑛=1 (𝑅𝑄𝑛𝑡 + 𝑂𝑄𝑛𝑡) ≤ 𝑀𝑡 𝑚𝑎𝑥
𝑜                        (11) 

 

3.2 Possibilistics Linear Programming (PLP) 
 

PLP is introduced into the APP to capture the 

imprecise operating costs.  

 

3.2.1 Triangular (possibility) distribution 
 

Triangular fuzzy numbers can be used for 

representing  uncertainty  within  an   interval.   The   triangular 

distribution is an optimal transform of the uniform probability 

distribution. It is the upper envelope of all the possibility 

distributions, transformed from symmetric probability densities 

with the same support. It can be used to express the vagueness 

of information and to represent fuzzy terms in information 

processing. In principle, membership functions can be of 

various shapes, but in practice, trapezoidal and triangular 

membership functions are the most frequently used (Zhang, 

Ma, & Chen, 2014).  

Figure 2(a) shows three prominent points: the most 

likely value point (𝑎𝑚), the optimistic value point (𝑎𝑜), and the 

pessimistic value point (𝑎𝑝), which are applied to capture the 

imprecise operating costs based on the triangular distribution 

seen in Figure 2(b). Figure 2(b) shows three prominent points: 

the optimistic cost (𝑧𝑜), most likely cost (𝑧𝑚), and the 

pessimistic cost (𝑧𝑝) that are used for minimizing the total 

costs. Because of uncertain costs, the objective function can be 

divided into 3  objective  functions:  (1)  minimizing  the  most 

likely total costs (minimizing 𝑧𝑚), (2) maximizing the lower 

total costs (maximizing 𝑧𝑚 − 𝑧𝑜), and (3) minimizing the 

higher total costs (minimizing 𝑧𝑝 − 𝑧𝑚) by pushing these three 

values toward the left. After pushing these three values toward 

the left, the shape of the triangular distribution can be changed 

by enlarging the gap between 𝑧𝑚 − 𝑧𝑜 while reducing the gap 

between 𝑧𝑝 − 𝑧𝑚. 
 

 
 
 

 
 

 
Figure 2. (a) Triangular distribution, and (b) Minimizing the total 

costs of logistics 

 

 

3.2.2 Mathematical model based on PLP  
 

1) Objective functions 
 

 Minimizing the most likely total costs 

 Min 𝑍1 = 𝑍𝑚 

             = ∑ ∑ [𝑟𝑛𝑡
𝑚𝑅𝑄𝑛𝑡 +

𝑇
𝑡=1

𝑁
𝑛=1 𝑜𝑛𝑡

𝑚𝑂𝑄𝑛𝑡 + 𝑠𝑛𝑡
𝑚𝑆𝑄𝑛𝑡 + 𝑖𝑛𝑡

𝑚 𝐼𝑄𝑛𝑡 + 𝑏𝑛𝑡
𝑚𝐵𝑄𝑛𝑡]  + ∑ (ℎ𝑡

𝑚𝐻𝑡 + 𝑓𝑡
𝑚𝐹𝑡)

𝑇
𝑡=1                                         (12) 

 

 Maximizing the possibility of obtaining the lower total costs 

Max 𝑍2 = (𝑍𝑚 − 𝑍𝑜) 

(b) 

(a) 
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             = ∑ ∑ [(𝑟𝑛𝑡
𝑚 − 𝑟𝑛𝑡

𝑜 )𝑅𝑄𝑛𝑡 +
𝑇
𝑡=1

𝑁
𝑛=1 (𝑜𝑛𝑡

𝑚 − 𝑜𝑛𝑡
𝑜 )𝑂𝑄𝑛𝑡 + (𝑠𝑛𝑡

𝑚 − 𝑠𝑛𝑡
𝑜 )𝑆𝑄𝑛𝑡 + (𝑖𝑛𝑡

𝑚 − 𝑖𝑛𝑡
𝑜 )𝐼𝑄𝑛𝑡 +

(𝑏𝑛𝑡
𝑚−𝑏𝑛𝑡

𝑜 )𝐵𝑄𝑛𝑡]+∑ [(ℎ𝑡
𝑚 − ℎ𝑡

𝑜)𝐻𝑡 + (𝑓𝑡
𝑚 − 𝑓𝑡

𝑜)𝐹𝑡]
𝑇
𝑡=1                                                                        (13) 

 

 Minimizing the risk of obtaining the higher total costs 

Min 𝑍3 = (𝑍𝑝 − 𝑍𝑚) 

 = ∑ ∑ [(𝑟𝑛𝑡
𝑝
− 𝑟𝑛𝑡

𝑚)𝑅𝑄𝑛𝑡 +
𝑇
𝑡=1

𝑁
𝑛=1 (𝑜𝑛𝑡

𝑝
− 𝑜𝑛𝑡

𝑚)𝑂𝑄𝑛𝑡 + (𝑠𝑛𝑡
𝑝
− 𝑠𝑛𝑡

𝑚)𝑆𝑄𝑛𝑡 +(𝑖𝑛𝑡
𝑝
− 𝑖𝑛𝑡

𝑚 )𝐼𝑄𝑛𝑡 

+ (𝑏𝑛𝑡
𝑝
−𝑏𝑛𝑡

𝑚)𝐵𝑄𝑛𝑡] + ∑ [(ℎ𝑡
𝑝
− ℎ𝑡

𝑚)𝐻𝑡 + (𝑓𝑡
𝑝
− 𝑓𝑡

𝑚)𝐹𝑡]
𝑇
𝑡=1                   (14) 

 

2) Constraints 

 

This model consists of two types of constraints; crisp and fuzzy. Equations (3) and (6) are crisp constraints where there 

is no uncertainty involved in setting such limitations. The remaining constraints (i.e., Equations (2), (4) and (5)) contain a certain 

level of uncertainty and must be transformed to crisp constraints by the defuzzification method. 

 

3.3 Integrating the mathematical model of PLP with FGP 

 

To solve the APP, a two-phase approach is applied. The first phase deals with the MOPMILP model, which can be used 

to convert the fuzzy MOPMILP values to crisp values. FGP is then applied in the second phase to convert the fuzzy MOPMILP 

values to single-objective possibilistic mixed-integer linear programming values. 

 

3.3.1 Phase 1 (Multi-Objective Mixed-Integer Linear Programming model) 

 

The crisp MOMILP model is stated as follows: 

Minimize Z = [𝑍1, −𝑍2, 𝑍3] 

                  𝑍1 =  𝑍
𝑚, 𝑍2 = 𝑍

𝑚 − 𝑍𝑜, 𝑍3 = 𝑍
𝑝 − 𝑍𝑚                   (15) 

 

The PIS and NIS of all objective functions are set as the boundaries to convert a multiple objective linear programming 

problem to a single objective linear programming problem. The calculation is below. 

 

𝑍1
𝑃𝐼𝑆 = minimize 𝑍𝑚 ,   𝑍1

𝑁𝐼𝑆 = maximize 𝑍𝑚 

𝑍2
𝑃𝐼𝑆 = maximize 𝑍𝑚 − 𝑍𝑜,    𝑍1

𝑁𝐼𝑆 = minimize 𝑍𝑚 − 𝑍𝑜 

𝑍3
𝑃𝐼𝑆 = minimize 𝑍𝑝 − 𝑍𝑚  ,   𝑍1

𝑁𝐼𝑆 = maximize 𝑍𝑝 − 𝑍𝑚                (16) 
 

The linear membership functions for each objective function and constraint are follows: 
 

 

𝜇1(𝑥) = {

1
𝑍1
𝑁𝐼𝑆−𝑍1

𝑍1
𝑁𝐼𝑆−𝑍1

𝑃𝐼𝑆

0

                   

𝑖𝑓 𝑍1 < 𝑍1
𝑃𝐼𝑆

𝑖𝑓 𝑍1
𝑃𝐼𝑆 ≤ 𝑍1 ≤ 𝑍1

𝑁𝐼𝑆

𝑖𝑓 𝑍1 > 𝑍1
𝑁𝐼𝑆

}                        (17) 

𝜇2(𝑥) = {

1
𝑍2−𝑍2

𝑁𝐼𝑆

𝑍2
𝑃𝐼𝑆−𝑍2

𝑁𝐼𝑆

0

                   

𝑖𝑓 𝑍2 > 𝑍2
𝑃𝐼𝑆

𝑖𝑓 𝑍2
𝑁𝐼𝑆 ≤ 𝑍2 ≤ 𝑍2

𝑃𝐼𝑆

𝑖𝑓 𝑍2 > 𝑍2
𝑁𝐼𝑆

}                       (18) 

𝜇3(𝑥) = {

1
𝑍3
𝑁𝐼𝑆−𝑍3

𝑍3
𝑁𝐼𝑆−𝑍3

𝑃𝐼𝑆

0

                   

𝑖𝑓 𝑍3 < 𝑍3
𝑃𝐼𝑆

𝑖𝑓 𝑍3
𝑃𝐼𝑆 ≤ 𝑍3 ≤ 𝑍3

𝑁𝐼𝑆

𝑖𝑓 𝑍3 > 𝑍3
𝑁𝐼𝑆

}                        (19) 

𝜇𝑔(𝑥) =

{
 
 

 
 
𝑑𝑛𝑡−𝑑𝑛𝑡

𝑜

𝑑𝑛𝑡
𝑚−𝑑𝑛𝑡

𝑜

𝑑𝑛𝑡
𝑝
−𝑑𝑛𝑡

𝑑𝑛𝑡
𝑚

0

                   

𝑖𝑓 𝑑𝑛𝑡
𝑜 ≤ 𝑑𝑛𝑡 ≤ 𝑑𝑛𝑡

𝑚𝑑𝑛𝑡 ≤ 𝑑𝑛𝑡
𝑜

𝑖𝑓 𝑑𝑛𝑡
𝑚 ≤ 𝑑𝑛𝑡 ≤ 𝑑𝑛𝑡

𝑝

𝑖𝑓 𝑑𝑛𝑡 ≤ 𝑑𝑛𝑡
𝑜  𝑎𝑛𝑑 𝑑𝑛𝑡 ≥ 𝑑𝑛𝑡

𝑝

}
 
 

 
 

                 (20) 
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The linear membership functions for minimizing the 

most likely total costs, maximizing the lower total, minimizing 

the higher total costs, and fuzzy constraint (customer demand) 

are described in Appendix. 

 

3.3.2 Phase 2 (FGP model) 
 

A fuzzy decision is a selection of activities, which 

simultaneously satisfy the objective functions and constraints. 

It consists of two categories of decision making: symmetric and 

asymmetric fuzzy. Zimmermann’s method belongs to sym-

metric fuzzy decision-making, which sets equal importance to 

objectives and constraints (weightless). In contrast, the WA 

method belongs to asymmetric fuzzy decision making in which 

a decision maker can assign different weights to objectives and 

constraints based on their importance, and on the preferences 

of the decision maker. 

 

1) Zimmermann’s method 
 

This method maximizes the lowest satisfaction of 

objectives, which can guarantee that all satisfaction levels of 

objectives are higher than the satisfaction level of the lowest 

objective. It is set as an upper benchmark of the optimal 

solution, in which all objective functions have equal weight 

(weightless) and can be expressed as follows: 
 

Maximize 𝜆 = 𝜆0 

Subject to: 

𝜆0 ≥ 𝜇𝑓(𝑥),  𝑓 = 1,2,3 

𝑥 ∈ 𝐹(𝑥)                 (21) 

 

where 𝜆0 indicates the minimum satisfaction degree 

of the objective functions, and 𝐹(𝑥) denotes the feasible region 

involving the constraints of the equivalent crisp model.  

 

2) Weighted Additive (WA) method 
 

This method is widely used in vector-objective 

optimization problems. It attempts to maximize the minimum 

overall satisfaction of fuzzy objective functions and fuzzy 

constraints and allows decision makers to assign weights of 

each objective based on their experiences. It can be expressed 

as follows: 

 

Maximize λ = ∑ 𝑤𝑗
𝐽
𝑗=1 𝜆𝑗+∑ 𝛽𝑖

𝐼
𝑖=1 𝛾𝑖 

Subject to: 

𝜆𝑗  ≤ 𝜇𝑗(𝑥),  𝑗 = 1,2,3 

𝛾𝑖 ≤ 𝜇𝑖(𝑥),  𝑖 = 1 

𝑥 ∈ 𝐹(𝑥) 

∑ 𝑤𝑗
𝐽
𝑗=1  +  ∑ 𝛽𝑖

𝐼
𝑖=1  =  1 where 𝑤𝑗 , 𝛽𝑖  ≥  0        (22) 

 

In this study, the main goal is assigned a weight of 

30% (equally to each objective), and the constraint is assigned 

a weight of 10%.  

 

3.4 α-Cut analysis 
 

In most cases, the satisfaction level may not be 

enough to satisfy the decision makers since a poor performance 

in one criterion cannot easily be balanced with a good per-

formance in the other criteria. 𝛼-Cut analysis can help decision 

makers to ensure that the satisfaction level for fuzzy goals and 

fuzzy constraints is not less than the decision-maker’s mini-

mum allowed satisfaction value (α). The following constraints 

can be added to the model. 
 

𝜆𝑗 ≥ 𝛼 

𝛾𝑖 ≥ 𝛼 

𝛼 ∈ [𝛼−, 𝛼+]                (23) 
 

4. Case Study 
 

In the case study, an APP problem with two types of 

products that are planned to be manufactured in the next 4 

periods is used to demonstrate the proposed methodology. The 

forecast demand, related operating costs, and the plant capacity 

are uncertain, and are summarized in Table 1. 

 

4.1 Other relevant information 
 

 The initial inventory level of Products 1 and 2 in the 

first period are 400 and 200 units, respectively. The 

ending inventory level of Products 1 and 2 in the 

fourth period are 300 and 200 units, respectively. 

 The costs of hiring and firing are imprecise with ($8, 

$10, $11) and ($2.0, $2.5, $3.2) per worker per hour, 

respectively. 

 The initial labor level is 300 person-hours. 

 The labor hours which are used to produce Products 

1 and 2 are fixed at 0.05 and 0.07 person-hours per 

unit in any period, respectively. 

 The hours of machine usage per unit are also fuzzy 

with (0.09, 0.10, 0.11) and (0.07, 0.08, 0.09) 

machine-hours for Products 1 and 2 in any period, 

respectively. 

 The required warehouse spaces for Products 1 and 2 

are 2 ft2 and 3 ft2 per unit, respectively. 

 
5. Results 
 

5.1 Multiple-Objective Mixed-Integer Linear  

      Programming (MOMILP) 
 

From Table 2, the PIS and NIS of minimizing the 

most likely total costs can be calculated by minimizing the most 

likely total costs. This yields a PIS of $270,075, while 

maximizing the most likely total costs yields a NIS of 

$431,260. The PIS and NIS can also be calculated to maximize 

the lower total costs. This yields the Positive Ideal Solution of 

$53,718, while minimizing the lower total costs yields the 

Negative Ideal Solution of $43,667.  
 

5.2 Fuzzy Goal Programming (FGP) 
 

5.2.1 Zimmermann’s method 
 

Based on Table 3, the overall satisfaction (𝜆), which 

is the maximum value of the minimum satisfaction of the 

objective functions, is equal to 59.9%. In this case, the 

satisfaction of each objective is equally set to 59.9% for the 

relative importance of each objective function (equal weight or  
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 Table 2. Positive Ideal Solution (PIS) and  Negative  Ideal  Solution  

                  (NIS) of all objective functions 

 

 

Positive Ideal 

Solution 

(PIS) 

Negative 

Ideal Solution 

(NIS) 
   

Minimize the most likely total 

costs (𝑍1 = 𝑍
𝑚) 

$270,075 $431,260 

Maximize the lower total costs 

(𝑍2 = 𝑍
𝑚 − 𝑍𝑜) 

$53,718 $43,667 

Minimize the higher total costs 

(𝑍3 = 𝑍
𝑝 − 𝑍𝑚) 

$26,819 $36,928 

   

 

Table 3. Optimal solutions from Zimmermann’s and Weighted 

Additive methods 

 

 
Zimmermann’s 

method 

Weighted 
Additive 

method 
   

Overall satisfaction (𝜆) 59.9% 60.2% 

Minimum possible value of 

the lower total costs (𝑍2 =
 𝑍𝑚 − 𝑍𝑜) 

$261,254 $226,932 

Minimum possible value of 

the most likely total costs 

(𝑍1 = 𝑍
𝑚) 

$310,940 $270,880 

Minimum possible value of 

the higher total costs (𝑍3 =
𝑍𝑝 − 𝑍𝑚) 

$341,814 $297,858 

Satisfaction from minimizing 

the most likely total costs (𝜆1) 
59.9% 99.5% 

Satisfaction from maximizing 

the lower total costs (𝜆2) 
59.9% 2.7% 

Satisfaction from minimizing 

the higher total costs (𝜆3) 
59.9% 98.4% 

Satisfaction of demand 

constraint (𝛾1) 
- 100% 

   

 

weightless). At 59.9% satisfaction, the minimum value of the 

most likely total costs (𝑍1) is $310,940, the maximum value of 

the lower total costs (𝑍2) is $49,686, and the minimum value 

of the higher total costs (𝑍3) is $30,874. 

 

5.2.2 Weighted Additive (WA) method 
 

The WA method is an asymmetric model in which 

decision-makers can set different weights for each objective 

function based on its importance. The WA method attempts to 

maximize each membership function of fuzzy goals and 

constraints with their corresponding weights. In this study, 

𝑤1 = 0.30,𝑤2 = 0.30, 𝑎𝑛𝑑 𝑤3 = 0.30 are assigned to the 

fuzzy goals and 𝛽1 = 0.10 is assigned to the fuzzy constraint. 

This leads to 90% weight for the fuzzy objectives and 10% for 

the fuzzy constraint. 

Based on the results obtained from the WA method 

(also shown in Table 4), the overall satisfaction (𝜆) is 60.2%, 

which is higher than the overall satisfaction from Zimmer-

mann’s method (59.9%). Referring to the aforementioned 

percentages of the satisfaction of each objective function and 

constraint,  the  minimum  value  of  the  most  likely  total costs  
 T
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Table 4. Results comparison 
 

 

Weighted 

Additive 

method 

Fuzzy multi-

objective PLP with 

the 𝛼-cut analysis 

(Scenario 5) 

   

Overall satisfaction (𝜆) 60.2% 67% 

Minimum possible value of the 

lower total costs (𝑍2 = 𝑍
𝑚 −

𝑍𝑜) 

$226,932 $235,919 

Minimum possible value of the 

most likely total costs (𝑍1 =
 𝑍𝑚) 

$270,880 $282,150 

Minimum possible value of the 

higher total costs (𝑍3 = 𝑍
𝑝 −

𝑍𝑚) 

$297,858 $310,679 

Satisfaction from minimizing 

the most likely total costs (𝜆1) 
99.5% 92.5% 

Satisfaction from maximizing 

the lower total costs (𝜆2) 
2.7% 25.5% 

Satisfaction from minimizing 

the higher total costs (𝜆3) 
98.4% 83.0% 

Satisfaction of demand 

constraint (𝛾1) 
 

100% 100% 

 
(𝑍1) is $270,880, the maximum value of the lower total costs 

(𝑍2) is $43,948, and the minimum value of the higher total costs 

(𝑍3) is $26,978. 

Normally, the obtained values of the satisfaction 

should follow the weights, which are assigned based on the 

decision-makers’ preferences. In this study, equal weights of 

the main goals (𝑤1 = 0.30,𝑤2 = 0.30, 𝑎𝑛𝑑 𝑤3 = 0.30) are 

assigned to each objective function but the obtained values of 

the satisfaction are different (𝜆1 = 99.5%, 𝜆2 = 2.7%,
𝑎𝑛𝑑  𝜆3 = 98.4%).  Typically, it is difficult to obtain lower 

total costs while minimizing both the most likely total costs and 

the risk to obtain higher total costs and still satisfy the same 

amount of the customer’s demand. 

As a result, the satisfaction values of obtaining the 

minimization of the most likely total costs (𝜆1 = 99.5%), 

reduce the risk of obtaining the higher total costs (𝜆3 =
98.4%), and achieve the customer’s demand (𝜆4 = 100%) 

while the satisfaction value of obtaining the lower total costs is 

only 2.7%. This low satisfaction value will not satisfy the 

decision makers. So, the 𝛼-Cut analysis needs to be introduced 

to achieve at least the minimum satisfaction level for the 

decision makers. 

 

5.2.3 α-Cut analysis 
 

This approach can help decision makers increase the 

satisfaction level of fuzzy objectives and constraints to be not 

less than their specified minimum allowed satisfaction value 

(𝛼). In this case, 𝛼+is set to 0.599, which is derived from the 

optimal satisfaction of Zimmermann’s method in which all 

objective functions are equally important (fully symmetric). 

𝛼−is set to 0.027, which is derived from the lowest satisfaction 

among fuzzy objective functions and constraints of the WA 

method in which the fuzzy objective functions and constraints 

have unequal importance (asymmetric). Thus, 𝛼 can vary from 

0.027 to a maximum level of 0.599 by a step size of 0.057 so 

that the solution can be changed from asymmetric to fully 

symmetric decision making.  

Based on the WA method, the satisfaction value from 

maximizing the lower total costs of logistics (𝜆2) is equal to 

2.7%. This is assumed to be lower than the decision-makers’ 

preferences, which are set to be at least 25%. The process of 𝛼-

Cut analysis tries to increase the satisfaction level by 

maximizing the lower total costs (𝜆2) to be more than or at least 

equal to 25%. 

Based on Table 5, when the value of  𝛼 is varied from 

0.027 to a maximum level of 0.599 by a step size of 0.057, the 

results are as follows: 

 The satisfaction values from minimizing the most 

likely total costs (𝜆1) and minimizing the higher total 

costs (𝜆3) keep decreasing while the satisfaction 

values from maximizing the lower total costs (𝜆2) 
keep increasing.  

 The satisfaction values of the fuzzy demand 

constraint (𝛾1) for all scenarios achieve 100% or are 

at their most likely value as a lower or higher amount 

of demand would reduce the satisfaction values of the 

total costs. 

 A break-even point is shown in Scenario 5 (S5) 

where the overall satisfaction of the model (λ) is the 

highest possible at 67% while the satisfaction values 

of all fuzzy objectives and demand constraint can 

satisfy the decision-makers preferences (higher than 

25% as imposed by the decision makers). 

 
        Table 5.     Solutions of 𝛼-Cut analysis 

 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

            

𝛼-Cut 0.027 0.084 0.141 0.198 0.255 0.312 0.369 0.426 0.483 0.540 0.599 

Overall 

satisfaction 
 

70% 69.3% 68.5% 67.8% 67% 66.4% 65.6% 64.9% 64.1% 63.4% 54.5% 

𝑍1 ($) 270,490 273,400 276,300 279,220 282,150 284,810 287,680 290,570 293,680 296,320 332,090 

𝑍2 ($) 43,938 44,512 45,085 45,674 46,231 46,803 47,376 47,949 48,572 49,097 49,688 

𝑍3 ($) 26,970 27,359 27,748 28,151 28,529 28,917 29,307 29,697 30,124 30,478 30,873 

𝜆1 99.7% 97.9% 96.1% 94.3% 92.5% 90.8% 89.1% 87.2% 85.3% 83.7% 61.5% 

𝜆2 2.7% 8.4% 14.1% 19.9% 25.5% 31.2% 36.9% 42.6% 48.7% 54% 59.9% 

𝜆3 98.5% 94.6% 90.8% 86.8% 83.0% 79.25 75.4% 71.5% 67.3% 63.8% 59.9% 

𝛾1 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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Figure 3 shows the plots of the satisfactions of each 

objective function and demand constraint in each scenario to 

see the pattern of the satisfaction values of all objectives while 

the value of 𝛼 is changed. It also shows the break-even point at 

Scenario 5 (S5) where the satisfaction values of all fuzzy objec-

tives and demand constraint can satisfy the decision-makers 

preferences (higher than 25%). 

Based on Table 4, the satisfaction values of each 

objective function and constraint achieve the minimum 

satisfaction level (25%). After applying the 𝛼-cut analysis to 

the traditional fuzzy multi-objective PLP model (Weighted 

Additive method), the satisfaction of maximizing the lower 

total costs (𝜆2) is increased by trade-off with satisfaction values 

of minimizing the most likely total costs (𝜆1) and minimizing 

the higher total costs (𝜆3). This can guarantee that applying 𝛼-

cut analysis can help decision makers to increase the 

satisfaction level of fuzzy objectives and constraints to be not 

less than their specified minimum allowed satisfaction value 

(𝛼). 

For the implementation plan, Table 6 shows that 

there is no overtime production and no backordering in 

Scenario 5. The manufacturer has to produce 9,832 units of 

Product 1 and 6,520  units of  Product  2 during the regular time 

in Periods 1-4. Fifty-seven is the total number of workers that 

are hired, and one hundred and six is the total number of 

workers that are laid off during Periods 1-4. The optimal total 

cost of the plan would range from $310,679 for the pessimistic 

case to $235,919 for the optimistic case with the most likely 

total costs of $282,150. 

 

 
 

Figure 3. Satisfactions of each objective function and demand con-

straint 

 
 

                             Table 6.     Production outcome and changes in labor level for Scenario 5 
 

Product1 

Period 

Regular time 

production 

(units) 

Overtime 

production 

(units) 

Subcontracting 
(units) 

Backordering 
level (units) 

Ending inventory 
(units) 

      

1 1,475 0 0 0 878 

2 3,188 0 0 0 1,074 

3 3,880 0 30 0 0 

4 1,289 0 3 0 300 
Total 9,832 0 33 0 2,252 

      

Product 2 

Period 
Regular time 
production 

(units) 

Overtime 
production 

(units) 

Subcontracting 

(units) 

Backordering 

level (units) 

Ending inventory 

(units) 

      

1 2,975 0 0 0 2,178 

2 880 0 0 0 2,559 
3 0 0 433 0 0 

4 2,665 0 27 0 200 

Total 6,520 0 460 0 4,937 
      

Product 1 & Product 2 

Period Hiring (workers) Firing (workers) 

   

1 0 18 

2 0 61 
3 0 27 

4 57 0 

Total 57 106 
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6. Conclusions 
 

APP is an intermediate term process of production 

planning to satisfy customer requirements and achieve a com-

petitive advantage. This study proposed using fuzzy multi-

objective optimization with α-Cut analysis to solve the APP 

problem with imprecise data. It can be used to ensure that all 

objectives are considered simultaneously, and the satisfactions 

of fuzzy objectives and constraints are not less than the decision 

maker’s minimum allowed satisfaction value (α). 

Normally, the multiple objectives are not treated as 

equally important. A fuzzy multi-objective linear programming 

with the WA method was introduced to APP, to assign different 

weights to various criteria. In addition, 𝛼-Cut analysis was also 

introduced to guarantee that the obtained result is acceptable 

matching the decision maker’s preferences. 

Our solutions showed that the proposed fuzzy multi-

objective optimization with α-Cut analysis can be used to 

improve the satisfaction level of fuzzy objectives and con-

straints. An optimal point (Scenario 5) where the satisfaction 

values of fuzzy objectives and the demand constraint can 

satisfy the required minimum satisfaction value from decision 

makers is selected. 

The main limitation of our proposed approach is the 

assumption of imprecise data. Thus, decision makers should 

generate and obtain an appropriate distribution, such as tri-

angular or trapezoid distribution, based on subjective judgment 

and historical data. Further research could explore different 

weights for individual goals and constraints, to better suit their 

practical applications.  
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Appendix 
 

1. Linear membership functions for the minimization goals (minimize the most likely total costs (𝑍1) and minimize the higher 

total costs (𝑍3)) are given as follows: 

 

𝜇1(𝑥) = {

1
𝑍1
𝑁𝐼𝑆−𝑍1

𝑍1
𝑁𝐼𝑆−𝑍1

𝑃𝐼𝑆

0

                   

𝑖𝑓 𝑍1 < 270,075

𝑖𝑓 270,075 ≤ 𝑍1 ≤ 431,260

𝑖𝑓 𝑍1 > 431,260

}          

𝜇3(𝑥) = {

1
𝑍3
𝑁𝐼𝑆−𝑍3

𝑍3
𝑁𝐼𝑆−𝑍3

𝑃𝐼𝑆

0

                   

𝑖𝑓 𝑍3 < 26,819

𝑖𝑓 26,819 ≤ 𝑍3 ≤ 36,928

𝑖𝑓 𝑍3 > 36,928

}        

  

2.   Linear membership functions for the maximization goals (maximize the lower total costs (𝑍2) are given as follows: 

 

𝜇2(𝑥) = {

1
𝑍2−𝑍2

𝑁𝐼𝑆

𝑍2
𝑃𝐼𝑆−𝑍2

𝑁𝐼𝑆

0

                   

𝑖𝑓 𝑍2 > 53,718

𝑖𝑓 43,667 ≤ 𝑍2 ≤ 53,718

𝑖𝑓 𝑍2 > 43,667

}       

    

3. Linear membership function for a fuzzy constraint (fuzzy demand constraint) is given as follows:     

 

𝜇𝑔(𝑥) =

{
 
 

 
 
𝑑𝑛𝑡−𝑑𝑛𝑡

𝑜

𝑑𝑛𝑡
𝑚−𝑑𝑛𝑡

𝑜

𝑑𝑛𝑡
𝑝
−𝑑𝑛𝑡

𝑑𝑛𝑡
𝑚

0

                   

𝑖𝑓 900 ≤ 𝑑𝑛𝑡 ≤ 1,000

𝑖𝑓 1,000 ≤ 𝑑𝑛𝑡 ≤ 1,080

𝑖𝑓 𝑑𝑛𝑡 ≤ 900 𝑎𝑛𝑑 𝑑𝑛𝑡 ≥ 1,080

}
 
 

 
 

   

 
 

 

 
 

 

                             Figure 4.      Linear membership functions: (a) minimization of the most likely total costs,  

                                                 (b) maximization of the lower total costs, (c) minimization of the higher total 
                                                 costs, and (d) fuzzy constraint 

 


