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Abstract 
 

In this research we will provide the necessary conditions on the missing coefficients of polynomials of any degree so 

that roots and critical points are integers. Moreover, we completely determine all cubic polynomials whose coefficients, roots, 

and critical points are integers. Also the algorithm and source code to search all possible coefficients are provided. 
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1. Introduction 
 

  Finding the roots of higher degree polynomials is 

much more difficult than finding the roots of a quadratic 

polynomial. To make it easier, there are a few tools. Firstly, if 

r  is a root of a polynomial equation, then ( )x r-  is a 

factor of the polynomial (Burton, 1970; Rosen, 2011).  

Secondly, any polynomials with real coefficients can be 

written as the product of linear factors (of the form 

( ))x r- and quadratic factors which are irreducible over the 

real numbers. Finally, a quadratic factor that is irreducible 

over the real is a quadratic function with no real solutions; that 

is, its discriminant is negative.  All factors, linear and 

quadratic, will have real coefficients. For more details, see 

(Barbeau, 2003; Rosen, 2011). Two other theorems also have 

to do with the roots of a polynomial, Descartes' Rule of Signs, 

and the Rational Root Theorem. Descartes' Rule of Signs has 

to do with the number of real roots possible for a given 

polynomial ( ),f x (Barbeau, 2003). The Rational Root 

Theorem  is  another   useful  tool   in   finding  the  roots of  a  
 

polynomial  

 
If the coefficients of a polynomial are all integers, and a root 

of the polynomial is rational (it can be expressed as a fraction 

in lowest terms), the numerator of the root is a factor of 
0

a  

and the denominator of the root is a factor of .
n

a  For more 

details, see (Barbeau, 2003; Rosen, 2011; Milovanovic, 

Mitrinovic & Rassias, 1994; Rahman  & Schmeisser, 2002). 

In (Lossers, 1989), Lossers explained how to find integer 

roots of a cubic polynomial. Up to now, most of the tools here 

give the way to find the integer roots of polynomials. 

However, to find polynomials whose coefficients, roots, and 

critical points are integers is a more interesting problem. This 

problem is on the list of unsolved problems published by 

Richard Nowakowski (Nowakowski, 1999). Such polynomials 

are called nice polynomials. Thus, various techniques have 

been proposed to solve and attempt to complete the problem 

in many papers, (Bruggeman & Gush, 1980; Buddenhagen, 

1992; Caldwell, 1990; Chapple, 1990; Carroll, 1989; Galvin, 

1990; Groves, 2007a, 2007b, 2008c). But in all cases all 

coefficients must be known. However, if some coefficients are 

known and some are missing, how can we find all missing 

coefficients so that polynomials are nice polynomials? This is 

also an interesting problem. For the quadratic polynomial, it is 

not difficult to determine missing coefficients since the 

quadratic formula will come to play. However, there is no 

implicit method for finding missing coefficients of the 

polynomials in the higher degree. Thus, in this research we 

will provide the necessary conditions on the missing 
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coefficients of polynomial of any degree so that roots and 

critical points are integers. Moreover, we completely 

determine all cubic polynomials whose coefficients, roots, and 

critical points are integers. Finally, we will provide the 

algorithm and source code to search all possible coefficients. 

  Consider 
1

1 1 0
( ) n n

n n
p x a x a x a x a-

-
= + + + +L   

where 
0 1
, , ...,

n
a a a  are integers. To find conditions on 

coefficients p(x) and p’(x) for which their roots are integers in 

general, we first state the very well-known Theorems: 
 

Theorem 1.1.   

Let 
1

1 1 0
( ) n n

n n
p x a x a x a x a-

-
= + + + +L  be a 

polynomial of degree 1n ³  where  
0 1
, , ...,

n
a a a  are 

integers. Then 

1) The polynomial  ( )p x  has exactly n   roots, counting 

multiplicities, and  

2) 
1 2

( ) ( )( ) ( ),
n n

p x a x r x r x r= - - -L  where  

1 2
, , ...,

n
r r r  are the roots of ( ).p x  

 

Theorem 1.2.   

Let 
1

1 1 0
( ) n n

n n
p x a x a x a x a-

-
= + + + +L  be a 

polynomial of degree 1n ³  where 
0 1
, , ...,

n
a a a  are 

integers. Suppose that the rational number 

0

,
k

r
r

=  

where
0

gcd( , ) 1,k r =  is a root of ( ).p x  Then, the integer 

k  is a divisor of 
0

a  and the integer 
0

r  is a divisor of .
n

a  

Moreover, if 1,
n

a =  then all rational roots are integers. 

Also, we need the following lemmas from Number Theory. 

 

Lemma 1.3.   

Suppose that , ,a b c  are positive integers, and that a  is a 

divisor of the product .bc  If gcd( , ) 1,a b =  then a  is a 

divisor of .c  

  If 
1 2
, , ...,

n
r r r  are integer roots of ( ),p x  then by 

Theorem 1.1 we have 

   

  ( )p x
1

1 1 0

n n

n n
a x a x a x a-

-
= + + + +L  

            
1 2

( )( ) ( )
n n

a x r x r x r= - - -L . 

 

And so, it deduces the following fact:  

     

  

for all {1, 2, ..., }
i

j nÎ   and {1,2, ..., }i nÎ .                (1) 

Since all 
i

r  are integers, it follows that 
n

a  is a divisor of 

n i
a

-
 for all {1,2, ..., }i nÎ . This means that the roots of 

( )p x  and 
( )

n

p x

a
 are the same. Moreover, by translation, we 

can investigate the polynomial all of whose roots and critical 

points are non-negative integers. Thus throughout this paper, 

it suffices to consider only the monic polynomial whose all 

roots and all critical points are non-negative integers. 

 

Lemma 1.4. 

Let 
1

1 1 0
( ) n n

n
p x x a x a x a-

-
= + + + +L  where 

0 1 1
, , ...,

n
a a a

-
 are integers. If r and s   are integer roots of 

( )p x  and p’(x), respectively, then 
0

|r a  and 
1| .

a
s

n
 

 

Proof. It follows from the equation (1). 

 
Theorem 1.5.  

Let 
1

1 1 0
( ) ,n n

n
p x x a x a x a-

-
= + + + +L  where 

0 1 1
, , ...,

n
a a a

-
 are integers. If all roots of ( )p x  and p’(x) 

are integers, then n  is a divisor of 
1 2 ( )
, , ..., ,

nk k k
a a a

f
 

where                                                           and f  is the 

Euler's totient function. If n  is prime, then n  is a divisor of 

1 2 1
gcd( , , ..., ).

n
a a a

-
  

 

Proof. Since all roots of p’(x) are integers, it implies by the 

equation (1) that 
 

 

where 
ij

r ’s are roots of p’(x).  

Let                                             for 

1, 2, ..., ( ).i nf=  It follows that gcd( , ) 1
i

n k =  and so 

n  must divide 
ik

a for 1, 2, ..., ( ).i nf=  In particular, if 

n  is prime, then ( ) 1n nf = -  and hence n  is a divisor 

of 
1 2 1

gcd( , , ..., ).
n

a a a
-

 

 

Theorem 1.6.  

Let 
1

1 1 0
( ) ,n n

n
p x x a x a x a-

-
= + + + +L  where 

0 1 1
, , ...,

n
a a a

-
 are integers and 

0 1
, 0.a a ¹  If all roots of 

( )p x  and p’(x) are non-negative integers, then 
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     (2) 
where 

 
and  

 

Proof. Applying the equation (1) to ( ) 0p x =  and p’(x) = 

0, we have 

 

 

 
 

and 

 

 

 
 

 

       

             

 

Hence,  

  

  
On the other hand, since 

i
r  and 

j
s  are all positive integers, it 

follows that 

 
 

and  

 
 

Thus 

 

 
 

Where 

 

 
 

Theorem 1.7. 

Let 
1

1 1 0
( ) ,n n

n
p x x a x a x a-

-
= + + + +L  where 

0 1 1
, , ...,

n
a a a

-
 are integers and 

0 1
, 0.a a ¹  If all roots of 

( )p x  and p’(x) are non-negative integers, then 

 

 

                                         
(3) 

Proof. Let 
1 2
, , ...,

n
r r r  and 

1 2 1
, , ...,

n
s s s

-
 be non-

negative integer roots of ( )p x  and p’(x), respectively. For 

each,  

 

 
It follows that 
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This implies that  

 

 

 
Therefore 

 
 

 With the approximation described above, it turns out 

that we can approximate the bound condition not only of the 

missing coefficients but also of the known coefficients of the 

polynomial. However, finding all missing coefficients of 

polynomials that have all integer roots and integer critical 

points is not easy and, without a computer, it also seems 

impossible. So, the next step is to develop the algorithm, by 

using conditions above in order to generate all missing 

coefficients in the polynomials such that all roots and critical 

points are integers. 

 

2. The Cubic Polynomials 
   

  Now we completely find all the cubic polynomials 

whose coefficients, roots and critical points are integers. Also, 

we do not restrict to positive roots and positive critical points. 

  We first start with the cubic polynomial 

3 2( ) ,p x x bx cx d= + + +  where , ,b c d  are integers, 

and its derivative is p’(x)
2( ) 3 2 .p x x bx c¢ = + +  Since 

3 | gcd( , ),b c  the polynomial p’(x) can be reduced to 

 

and 
1

3b k=  and 
2

3 .c k=  Let , ,p q r  be solutions of 

( ) 0.p x =  Then 

 

3 2( ) ( )( )( ).p x x bx cx d x p x q x r= + + + = - - -

 

Equating the coefficients, we have 

  

 p q r b+ + = - , 

    

 
pq qr rp c+ + = , 

   

  
pqr d= - . 

   

It follows that p q b r+ = - -  and 
2.pq c br r= + +  

Let ,m m ¢ be the roots of                    Then 

 

2

1 1 2 2

1 1 2

2 4 4

2

k k k
m k k k

- + -
= = - + -  

and 

 

  Since 2

1 1 2
,m k k k= - + -  we have 

2

2 1
2k mk m= - -  and hence 

 2 2

2 1
3 6 3 2 3 .c k mk m mb m= = - - = - -  

Therefore, 

  2 2 22 3 .pq c br r r br mb m= + + = + - -  

   
  At this point we can use the fact that any one of five 

roots can be equal to 0 by the translation. Without loss of 

generality let 0.m =  Thus 
2 .pq r br= +  Note that the 

integers, ,p q  are also solutions to 

2 2 2( ) ( ) ( ) 0x b r x r br x p q x pq- - - + + = - + + =  

and so 
2 2( ) 4p q pq w+ - =  for some integer .w  Thus, 

2 2 2 2 2 22 4 4 2 3 ( 3 )( ).w b br r r br b br r b r b r= + + - - = - - = - +

2 2 2 2 2 22 4 4 2 3 ( 3 )( ).w b br r r br b br r b r b r= + + - - = - - = - +  

  Let 
1

3e b r k r= + = +  and then we can 

simplify that 

   

2

1
3 (4 ).w e k e= -                                 (4) 

  To find 
1
, ,k e w  that satisfy the equation (4), we 

need to define the function ( ),v x  which is  the smallest 

positive integer whose square is divisible by .x  If 

1 2
1 2

,n
n

x p p p
a a a

= L  then it is straight forward to check 

that 

 
 

To solve the equation (4), we consider 2 cases.  
 

First case: 4 | .e  Then 4e k=  for some .k Î ¥  Thus, 

2

1 1
3 (4 4 ) 12 ( ).w e k k e k k= - = -  Note that (12 ) 2 (3 )v e v e= 

(12 ) 2 (3 )v e v e=  and 2 (3 ) | .v e w  So, 2 (3 )w tv e=  for 

some integer .t  It follows that 

2

1
3

4

w
e

ek

+

=  yields an integral 

solution. 
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Second case: 4 | .e/  Note that (3 ) | .v e w  Then if (3 ),w v e=  then 

2

3

w

e
 is an integer and so letting 

2

1
3 .

4

w
e

ek

+

=
 

If 

(3 )w tv e=
 
for some integer ,t  it is not difficult to see that 

2

1
3

4

w
e

ek

+

=  is an integer if and only if t  is odd. Combining 

the cases, we find that the equation (4) has an integer solution if and only if 

 

  (3 )w sv e=                             (5)

  

where s  is even if 4 | e  and s  is odd if 4 | .e  Therefore, given , ,e tÎ Î¥ ¢  if 4 | ,e  we have 

   
  0,c =  

  

2 2 2
2 ( (2 (3 )) )

( )
16

e tv e
d e e b

e

-
= - - = -  

and if 4 | ,e  we have 

     
  0,c =  

  

2 2 2
2 ( ((2 1) (3 )) )

( ) .
16

e t v e
d e e b

e

- +
= - - = -  

It remains to check that , , , ,p q r m m ¢ are integers. Since 0m =  and 3 | ,b  it follows that m’ is an integer. By the quadratic 

formula, we have p  and q
 
are of the form 

2 2

b r w e w+ + +
=  or the form .

2 2

b r w e w+ - -
=  By the equation (5), 

we can see that w  and e  have the same parity check which implies that 
2

e w±
 are always integers. That is, p  and q

 
are 

integers and since ,p q b r+ = - -  it follows that r  is an integer. Therefore, all roots and critical points of 

3 2( )p x x bx cx d= + + +  are integers. 

Denote l  horizontal displacement and now we complete the proof of the following theorem. 

 

Theorem 2.1.  A monic cubic polynomial whose coefficients, roots, and critical points are integers is of the form 
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 Corollary 2.2  Let 
0

.a Î ¢
 
Then a monic polynomial 

3 2

2 1 0
( ) ,p x x a x a x a= + + +

 
where 

1 2
,a a Î ¢  has roots and 

critical points are integers if and only if there are , ,l e s Î ¢  such that  

 

 
and 

 
 

Proof. This follows directly from Theorem 2.1. 

 For example, let 8, 2, 0,e s l= = =  we have 3 2( ) 24 2048p x x x= + -  and its roots are 8, 16, 16.- -   Also, 

its derivative is 
23 48x x+  and its roots are 0 and 16- .  

 

3. Some Numerical Results of Polynomials with Higher Degree 
 

In order to complete this study, an algorithm is given in the form of Octave command for finding all missing integer 

coefficients of polynomial whose roots and critical points are integers when some coefficients are known. For given positive 

integers 
0

, ,n a  and 
1
,a

 
let us consider a monic polynomial 

1

1 1 0
( ) n n

n
p x x a x a x a-

-
= + + + +L  

where 
1 2
, , ...,

n
a a a are integers. By Theorem 1.6 and Theorem 1.7, we know that 

  
 

where 

 
and 

  
 

So the function “FindCoefficient 
0 1

( , , )n a a ” is used to locate all 
i

a  that satisfy the above conditions and screen those 
i

a out 

so that the function has integer roots and integer critical points. 
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function sol = FindCoefficient 
0 1

( , , )n a a  

1 0
;a a=   

2 1
;a a=  

1
1;

n
a

+
=  

for 1 : 2i n= -  

{ }/ / ( 1)

0 1
max ( , ) * ( ( )) , ( / ( )) * ( 1, ) * ( ( ) / ) ;i n i nA nchoosek n i abs a n n i nchoosek n i abs a n -= - -   

0 1
min( ( , ) * ( ( )), ( / ( )) * ( 1, ) * ( ( ) / ));B nchoosek n i abs a n n i nchoosek n i abs a n= - -  

if (mod( ,2) 1)i = =   

;C A=  

;A B= -  

;B C= -  

end 

if ( ( : ) 0)length A B >   

1
: ;

n i
a A B

- +
=  

else 

1
0;

n i
a

- +
=  

end 

end 

vout = cell(size( ))a ; 

[vout:] = ndgrid( :);a  

for 1 :i = size(vout,2) 

temp = vout( );i  

p(:, )i  = temp(:);  

end 

sol = [];  

p = fliplr( );p  

0.001;e =   

for 1 :i =  size( ,1)p   

: 1 : 1;k n= -   

( ,1 : 1). * ;q p i end k= -  

s = roots( ( , :));p i   

ss = roots( );q   

if (sum(abs(s – round(s))==0) == length(s) & 

sum(abs(ss – round(ss))==0) == length(ss) & 

sum(imag(s)==e) == length(s) & 

sum(imag(ss)==e) == length(ss)) 

sol = [sol; ( , :)p i ]; 

end 

end 

For example, for                                                                                        all possible 
i

a  are shown in Table 1 below: 
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Table 1.   All possible 
i

a  for 3n =  so that ( ) 0p x =  has integer roots and integer critical points. 

 

4. Conclusions  
 

Normally, to roughly sketch the graph of a 

polynomial ( )p x  with degree n  by hand, at least we need to 

know the -x intercepts and relative maxima or relative 

minima. That is, it requires solving the roots and critical 

points of ( ) 0p x =  and p’(x) = 0, respectively. However, 

for the higher degree, the equations ( ) 0p x =  and p’(x) = 0 

is hard to solve  unless their roots and critical points are 

integers. It is also not easy to illustrate examples of 

polynomials whose coefficients, roots, and critical points are 

integers without a computer auxiliary program. Moreover, it 

raises more problems in terms of time-consuming and 

existence if some coefficients of the polynomial are fixed. So, 

our work completely determines all cubic polynomials whose 

coefficients, roots, and critical points are integers and gives 

bound conditions in order to construct desired polynomials. 

Furthermore, we can take advantage from this work to reduce 

the amount of work and to increase the speed of a computer 

search for any higher degree of desired polynomials. 
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