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Abstract 
 

The finite integration method using Chebyshev polynomial (FIM-CBS) has been proposed in order to overcome the 

difficulty of solving linear partial differential equations. In this paper, we develop the FIM-CBS in order to devise a powerful 

numerical algorithm for finding approximate solutions of the nonlinear time-fractional Benjamin-Bona-Mahony-Burgers equations 

with the initial and boundary conditions. The time-fractional derivative is in the Caputo sense which is estimated by the forward 

difference quotient. Furthermore, we implement our proposed algorithm via several numerical experiments by comparing the 

approximate results obtained by our method and other methods with their analytical solutions. It can be evidence that the developed 

FIM-CBS algorithm is very effective and efficient with a small number of computational grid points which is discretized by the 

zeros of Chebyshev polynomial of a certain degree.  

 

Keywords: finite integration method, Chebyshev expansion, time fractional derivative, Benjamin-Bona-Mahony-Burgers  
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1. Introduction 
 

The fractional differential equations (FDEs) are used 

in many fields of sciences and engineering. In 1695, Leibniz 

and L’Hopital firstly introduced the basic concept of FDEs in 

which the order of derivative can take an integer or rational 

number in the interval [0,1] (Oldham & Spanier, 1974). The 

applications of FDE have been occurring in various real world 

physical problems, such as diffusion processes (Metzler & 

Klafter, 2000), oscillating dynamical systems (Agila, Baleanu, 

Eid, & Irfanoglu, 2016), thermal conductivity (Kumar, Singh, 

& Baleanu, 2017), rheological models (Yang, Gao, & 

Srivastava, 2017), quantum models (Laskin, 2011) etc. In order 

to better understand these problems as well as further apply 

them in practical life, it is important to find their solutions. 

However, it is very difficult to find them in the closed form of 

analytical solution. Therefore, the numerical methods play an 

essential role to solve these problems. Some efficient methods

 
have emerged, such as Adomian decomposition method (Li & 

Wang, 2009), homotopy perturbation method (Khan, Ara, & 

Mahmood, 2015), and variational iteration method (Yulita, 

Nooran, & Hashim, 2009). 

Recently, Boonklurb, Duangpan, and Treeyaprasert 

(2018) have proposed the finite integration method using 

Chebyshev expansion (FIM-CBS), which uses Chebyshev 

polynomials to modify the original FIM (Wen, Hon, Li, & 

Korakianitis, 2013) for solving linear partial differential 

equations (PDEs). The FIM-CBS also provides a much higher 

accuracy than the finite difference method and those traditional 

FIMs with less computation. During recent year, many articles 

have successfully demonstrated the accuracy of FIMs for 

seeking numerical solutions both of linear and nonlinear PDEs. 

However, the application of FIM has not been performed for 

solving the nonlinear FDEs like the Benjamin-Bona-Mahony-

Burgers (BBMB) equations. Originally, the BBMB equation 

was introduced by Benjamin, Bona, and Mahony (1972). It is 

the mathematical model of propagation for small amplitude 

long waves in nonlinear dispersive media system which was 

improved from the Korteweg-de Vries (KdV) equation. 

Normally, the BBMB and KdV equations are relevant to the 

wave breaking models, since the KdV model came from water 
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waves which was used for long waves in many other physical 

systems. However, in some physical systems of long waves, the 

KdV equation was not applicable. Hence, the BBMB was 

proposed. It described the unidirectional transmission of long 

wave signals in a certain nonlinear dispersive system (Kondo 

& Webler, 2016). For the time-fractional BBMB equation, it 

was presented to discuss the dynamic behavior of physical 

systems (Kumar & Kumar, 2014).  

Therefore, the time-fractional BBMB equations are 

operated in this paper by using the FIM-CBS proposed by 

Boonklurb et al. (2018) to construct a numerical algorithm for 

finding their approximate solutions. For the nonlinear term, we 

use the idea of Chebyshev expansion to handle it. The time 

fractional derivative term is in the Caputo sense, which 

estimated by the forward difference quotient. The rest of this 

paper is organized into four parts as follows. In Section 2, we 

develop the FIM-CBS to construct the Chebyshev integration 

matrix for the general range. Section 3 presents the numerical 

scheme by using the developed FIM-CBS for finding 

approximate solutions of the time-fractional BBMB equations. 

In Section 4, our numerical algorithm is evaluated for its 

effectiveness and accuracy via several experiments by 

comparing our numerical results with their exact solutions. We 

also illustrate the error and graph of their approximate solutions 

in the Section 4. Finally, conclusions and some discussions 

about this work and the future work are provided in Section 5. 

 

2. Developed FIM-CBS in the General Range 
 

In this section, we give some definitions and essential properties of Chebyshev polynomial: Mason and Handcomb (2013) 

for more details and proofs. Moreover, we also use the Chebyshev polynomials in the general range to develop the Chebyshev 

integration matrix of FIM-CBS. Then, our developed FIM-CBS can be applied to invent the numerical algorithm for performing 

on an arbitrary domain [𝑎, 𝑏] rather than [−1,1]. 
 

Definition 2.1. The Chebyshev polynomial of the first kind of degree 𝑛 ≥ 0 is defined by 

 

𝑇𝑛(𝑥) = cos(𝑛 cos−1 𝑥)  for  𝑥 ∈ [−1,1]. 
 

However, The Chebyshev polynomial in the general range of degree 𝑛 can be defined by 

 

𝑅𝑛(𝑥) = 𝑇𝑛 (
2𝑥−𝑎−𝑏

𝑏−𝑎
)  for  𝑥 ∈ [𝑎, 𝑏]. 

 

Henceforward, in this article, the Chebyshev polynomial of degree 𝑛 refers to 𝑅𝑛(𝑥). 

 

Lemma 2.2. (i)  For 𝑛 ∈ ℕ and 𝑎, 𝑏 ∈ ℝ, the zeros of Chebyshev polynomial 𝑅𝑛(𝑥) are 

 

𝑥𝑘 =
1

2
((𝑏 − 𝑎) cos (

2𝑘−1

2𝑛
𝜋) + 𝑎 + 𝑏),  𝑘 ∈ {1, 2, 3,… , 𝑛}. 

 

(ii)  For 𝑥 ∈ [𝑎, 𝑏], the single layer integrations of Chebyshev polynomial 𝑅𝑛(𝑥) are 

 

 𝑅̅0(𝑥) = ∫ 𝑅0(𝜉) 𝑑𝜉
𝑥

𝑎
= 𝑥 − 𝑎, 

 𝑅̅1(𝑥) = ∫ 𝑅1(𝜉) 𝑑𝜉
𝑥

𝑎
=

(𝑥−𝑎)(𝑥−𝑏)

𝑏−𝑎
,                   (1) 

𝑅̅𝑛(𝑥) = ∫ 𝑅𝑛(𝜉) 𝑑𝜉
𝑥

𝑎
=

𝑏−𝑎

4
(
𝑅𝑛+1(𝑥)

𝑛+1
−

𝑅𝑛−1(𝑥)

𝑛−1
−

2(−1)𝑛

𝑛2−1
),  𝑛 ≥ 2. 

 

(iii)  Let {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} be the zeros of 𝑅𝑛(𝑥) and define the Chebyshev matrix 𝐑 by 

 

𝐑 = [

𝑅0(𝑥1) 𝑅1(𝑥1) ⋯ 𝑅𝑛−1(𝑥1)

𝑅0(𝑥2) 𝑅1(𝑥2) ⋯ 𝑅𝑛−1(𝑥2)
⋮ ⋮ ⋱ ⋮

𝑅0(𝑥𝑛) 𝑅1(𝑥𝑛) ⋯ 𝑅𝑛−1(𝑥𝑛)

].                       (2) 

 

Then, it has the multiplicative inverse 𝐑−1 =
1

𝑛
diag(1, 2, 2,… ,2)𝐑𝑇. 

 To construct the Chebyshev integration matrix. We first let 𝑀 ∈ ℕ and 𝑎, 𝑏 ∈ ℝ. Define an approximate solution 𝑢(𝑥) 

of a certain PDE by using a linear combination of Chebyshev polynomial 𝑅𝑛(𝑥), i.e., 

 

𝑢(𝑥) = ∑ 𝑐𝑛𝑅𝑛(𝑥)

𝑀−1

𝑛=0

  for  𝑥 ∈ [𝑎, 𝑏], 

 

where 𝑐𝑛 is an unknown constant. For 𝑘 ∈ {1, 2, 3,… ,𝑀}, let 𝑥𝑘 be computational nodal points which are generated by the zeros 

of Chebyshev polynomial 𝑅𝑀 defined in (1). Substituting each node 𝑥𝑘 into (2), it can be expressed in the matrix form as 



A. Duangpan & R. Boonklurb / Songklanakarin J. Sci. Technol. 43 (3), 677-686, 2021  679 

 

[

𝑢(𝑥1)

𝑢(𝑥2)
⋮

𝑢(𝑥𝑀)

] = [

𝑅0(𝑥1) 𝑅1(𝑥1) ⋯ 𝑅𝑀−1(𝑥1)

𝑅0(𝑥2) 𝑅1(𝑥2) ⋯ 𝑅𝑀−1(𝑥2)
⋮ ⋮ ⋱ ⋮

𝑅0(𝑥𝑀) 𝑅1(𝑥𝑀) ⋯ 𝑅𝑀−1(𝑥𝑀)

] [

𝑐0

𝑐1

⋮
𝑐𝑀−1

], 

 

which is denoted by 𝐮 = 𝐑𝐜. Since 𝐑 is invertible by Lemma 2.2 (iii), 𝐜 = 𝐑−1𝐮. Next, consider the single layer integration of 𝑢 

from 𝑎 to 𝑥𝑘 denoted by 𝑈(1), we obtain 

 

𝑈(1)(𝑥𝑘) = ∫ 𝑢(𝜉)𝑑𝜉
𝑥𝑘

𝑎

= ∑ 𝑐𝑛 ∫ 𝑅𝑛(𝜉)𝑑𝜉
𝑥𝑘

𝑎

𝑀−1

𝑛=0

= ∑ 𝑐𝑛𝑅̅𝑛(𝑥𝑘)

𝑀−1

𝑛=0

 

 

for 𝑘 ∈ {1, 2, 3,… ,𝑀} or in the matrix form:  

 

[
 
 
 
𝑈(1)(𝑥1)

𝑈(1)(𝑥2)
⋮

𝑈(1)(𝑥𝑀)]
 
 
 

=

[
 
 
 
𝑅̅0(𝑥1) 𝑅̅1(𝑥1) ⋯ 𝑅̅𝑀−1(𝑥1)

𝑅̅0(𝑥2) 𝑅̅1(𝑥2) ⋯ 𝑅̅𝑀−1(𝑥2)
⋮ ⋮ ⋱ ⋮

𝑅̅0(𝑥𝑀) 𝑅̅1(𝑥𝑀) ⋯ 𝑅̅𝑀−1(𝑥𝑀)]
 
 
 
[

𝑐0

𝑐1

⋮
𝑐𝑀−1

], 

 

which we denote it by 𝐔(1) = 𝐑̅𝐜 = 𝐑̅𝐑−1𝐮 ≔ 𝐀𝐮, where 𝐀 = 𝐑̅𝐑−1 ≔ [𝑎𝑘𝑖]𝑀×𝑀 is called the “Chebyshev integration matrix” 

for the developed FIM-CBS, i.e., 

 

𝑈(1)(𝑥𝑘) = ∫ 𝑢(𝜉)𝑑𝜉
𝑥𝑘

𝑎

= ∑𝑎𝑘𝑖𝑢(𝑥𝑖)

𝑀

𝑖=1

. 

 

Next, consider the double-layer integration of 𝑢 from 𝑎 to 𝑥𝑘 denoted by 𝑈(2), we have  

 

𝑈(2)(𝑥𝑘) = ∫ ∫ 𝑢(𝜉1)𝑑𝜉1𝑑𝜉2

𝜉2

𝑎

𝑥𝑘

𝑎

= ∑𝑎𝑘𝑖 ∫ 𝑢(𝜉1)𝑑𝜉1

𝑥𝑖

𝑎

𝑀

𝑖=1

= ∑∑𝑎𝑘𝑖𝑎𝑖𝑗𝑢(𝑥𝑗)

𝑀

𝑗=1

𝑀

𝑖=1

 

 

for 𝑘 ∈ {1, 2, 3,… ,𝑀}, it can be written in the matrix form as 𝐔(2) = 𝐀2𝐮. Similarly, for the 𝑚-layer integration of 𝑢 from 𝑎 to 𝑥𝑘 

denoted by 𝑈(𝑚) can be expressed as 

 

𝑈(𝑚)(𝑥𝑘) = ∫ …∫ 𝑢(𝜉1)𝑑𝜉1 …𝑑𝜉𝑚

𝜉2

𝑎

𝑥𝑘

𝑎

= ∑ …∑𝑎𝑘𝑖𝑚 …𝑎𝑖1𝑗𝑢(𝑥𝑗)

𝑀

𝑗=1

𝑀

𝑖𝑚=1

 

 

for 𝑘 ∈ {1, 2, 3,… ,𝑀}, whose equation can be composed as 𝐔(𝑚) = 𝐀𝑚𝐮. 

 

3. Numerical Algorithm for Solving Time-Fractional BBMB Equations 
 

Before embarking on the details of constructing a numerical algorithm via the developed FIM-CBS for solving time-

fractional BBMB equations, we provide the basic definitions of fractional derivatives, the necessary notations and some important 

facts. More details on basic results of fractional calculus can be found in Podlubny (1999). 

 

Definition 3.1. (Podlubny, 1999) A real-valued function 𝑢(𝑡), 𝑡 > 0 can be defined on the space 𝐶𝜇, 𝜇 ∈ ℝ, if there exist a real 

number 𝜌 > 𝜇 such that 𝑢(𝑡) = 𝑡𝜌𝑢1(𝑡), where 𝑢1(𝑡) ∈ 𝐶[0, ∞) and it is defined on the space 𝐶𝜇
𝑛, if and only if 𝑢(𝑛) ∈ 𝐶𝜇, 𝑛 ∈ ℕ. 

 

Definition 3.2. The Riemann-Liouville fractional integral operator of order 𝛼 ≥ 0 of an integrable function 𝑢 ∈ 𝐶𝜇, 𝜇 > −1 is 

defined by 

 

𝐼𝛼𝑢(𝑡) = {

1

Γ(𝛼)
∫

𝑢(𝑠)

(𝑡−𝑠)1−𝛼 𝑑𝑠
𝑡

0
for  𝛼 > 0,

𝑢(𝑡)                      for  𝛼 = 0,

  

 

where Γ(⋅) is the well-known Gamma function. 

 

Definition 3.3. The Caputo fractional-order derivative of 𝑢 ∈ 𝐶−1
𝑚 , 𝑚 ∈ ℕ, is defined by 
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𝐷𝛼𝑢(𝑡) = 𝐼𝑚−𝛼𝐷𝑚𝑢(𝑡) = {

1

Γ(𝑚−𝛼)
∫

𝑢(𝑚)(𝑠)

(𝑡−𝑠)1−𝑚+𝛼
𝑑𝑠

𝑡

0
for  𝛼 ∈ (𝑚 − 1,𝑚),

𝑢(𝑚)(𝑡)                          for  𝛼 = 𝑚.                 

  

 

Next, the time-fractional BBMB equations in one-dimensional space considered by Kumar and Kumar (2014) can be 

written as 

 

𝐷𝑡
𝛼𝑢 −

𝜕3𝑢

𝜕𝑥2𝜕𝑡
+

𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝑓(𝑥, 𝑡),   𝑥 ∈ (0, 𝐿),   𝑡 ∈ (0, 𝑇], 

 

subject to the initial condition 

 

𝑢(𝑥, 0) = 𝜙(𝑥),   𝑥 ∈ [0, 𝐿],                               (3) 

 

and the Dirichlet boundary conditions 

 

𝑢(0, 𝑡) = 𝜓1(𝑡),   𝑢(𝐿, 𝑡) = 𝜓2(𝑡),   𝑡 ∈ (0, 𝑇],                                   (4) 

 

 

where 𝐿 and 𝑇 are positive real numbers, 𝑓(𝑥, 𝑡), 𝜙(𝑥), 𝜓1(𝑡) and 𝜓2(𝑡) are the given smooth functions and 𝛼 ∈ (0,1] is the orders 

of time fractional derivative term.  

Let us first use the technique of linearization to handle (3) by taking the iteration at  time 𝑡𝑚 = 𝑚(Δ𝑡), where Δ𝑡 is a 

time step and 𝑚 ∈ ℕ. Then, we obtain 

  

𝐷𝑡
𝛼𝑢|𝑡=𝑡𝑚

−
𝜕3𝑢

𝜕𝑥2𝜕𝑡
|
𝑡=𝑡𝑚

+
𝜕𝑢𝑚

𝜕𝑥
+ 𝑢𝑚−1 𝜕𝑢𝑚

𝜕𝑥
= 𝑓(𝑥, 𝑡𝑚).                                (5) 

 

where 𝑢𝑚 = 𝑢(𝑥, 𝑡𝑚) is the numerical solution at 𝑚𝑡ℎ iteration. Next, consider the fractional-order derivative term with respect to 

time in the Caputo sense, we have 

 

𝐷𝑡
𝛼𝑢|𝑡=𝑡𝑚

=
1

Γ(1−𝛼)
∫

𝑢𝑠(𝑥,𝑠)

(𝑡𝑚−𝑠)𝛼
𝑑𝑠

𝑡𝑚

0
=

1

Γ(1−𝛼)
∑ ∫

𝑢𝑠(𝑥,𝑠)

(𝑡𝑚−𝑠)𝛼 𝑑𝑠
𝑡𝑖+1

𝑡𝑖

𝑚−1
𝑖=0 .                    (6) 

 

We use the first order forward difference quotient to approximate the time derivative term in (7). For convenience, we also let 𝑗 =
𝑚 − 𝑖 − 1. Then, 

 

𝐷𝑡
𝛼𝑢|𝑡=𝑡𝑚

≈
1

Γ(1 − 𝛼)
∑ ∫ (𝑡𝑚 − 𝑠)−𝛼 (

𝑢𝑖+1 − 𝑢𝑖

Δ𝑡
) 𝑑𝑠

𝑡𝑖+1

𝑡𝑖

𝑚−1

𝑖=0

 

=
1

Γ(1−𝛼)
∑ (

𝑢𝑖+1−𝑢𝑖

Δ𝑡
)𝑚−1

𝑖=0 (
(𝑡𝑚−𝑡𝑖)

1−𝛼−(𝑡𝑚−𝑡𝑖+1)
1−𝛼

1−𝛼
)  

=
(Δ𝑡)1−𝛼

Γ(2−𝛼)
∑ (

𝑢𝑖+1−𝑢𝑖

Δ𝑡
)𝑚−1

𝑖=0 ((𝑚 − 𝑖)1−𝛼 − (𝑚 − 𝑖 − 1)1−𝛼)                           (7) 

=
(Δ𝑡)−𝛼

Γ(2−𝛼)
∑ (𝑢𝑚−𝑗 − 𝑢𝑚−𝑗−1)𝑚−1

𝑗=0 ((𝑗 + 1)1−𝛼 − 𝑗1−𝛼)  

= ∑ 𝑤𝑗(𝑢
𝑚−𝑗 − 𝑢𝑚−𝑗−1)𝑚−1

𝑗=0 , 

 

where 𝑤𝑗 =
(Δ𝑡)−𝛼

Γ(2−𝛼)
((𝑗 + 1)1−𝛼 − 𝑗1−𝛼). Next, we consider the third derivative term with respect to twice spaces and single time 

in (6). We approximate the time derivative of this term by using the first order forward difference quotient, we have 

 
𝜕3𝑢

𝜕𝑥2𝜕𝑡
|
𝑡=𝑡𝑚

=
𝜕2

𝜕𝑥2 (
𝜕𝑢

𝜕𝑡
)|

𝑡=𝑡𝑚

=
𝜕2

𝜕𝑥2 (
𝑢𝑚−𝑢𝑚−1

Δ𝑡
) =

1

Δ𝑡
(
𝜕2𝑢𝑚

𝜕𝑥2 −
𝜕2𝑢𝑚−1

𝜕𝑥2 ).                         (8) 

 

Thus, we replace (8) and (9) into (6) to obtain 

 

∑ 𝑤𝑗(𝑢
𝑚−𝑗 − 𝑢𝑚−𝑗−1)𝑚−1

𝑗=0 −
1

Δ𝑡
(
𝜕2𝑢𝑚

𝜕𝑥2 −
𝜕2𝑢𝑚−1

𝜕𝑥2 ) +
𝜕𝑢𝑚

𝜕𝑥
+ 𝑢𝑚−1 𝜕𝑢𝑚

𝜕𝑥
= 𝑓(𝑥, 𝑡𝑚).                           (9) 

 

Next, to eliminate the derivative terms from the above equation, we apply the developed FIM-CBS in Section 2 by taking the twice 

layer integration. Then, we get the following equation at each zero of Chebyshev polynomial 𝑥𝑘 for 𝑘 ∈ {1, 2, 3,… ,𝑀}, we have 
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𝑤0 ∫ ∫ (𝑢𝑚 − 𝑢𝑚−1)𝑑𝜉𝑑𝜂
𝜂

0

𝑥𝑘

0
+ ∑ 𝑤𝑗 ∫ ∫ (𝑢𝑚−𝑗 − 𝑢𝑚−𝑗−1)𝑑𝜉𝑑𝜂 −

𝑢𝑚

Δ𝑡
+

𝑢𝑚−1

Δ𝑡

𝜂

0

𝑥𝑘

0
𝑚−1
𝑗=1  +∫ 𝑢𝑚𝑑𝜂

𝑥𝑘

0
+

∫ ∫ (𝑢𝑚−1 𝜕𝑢𝑚

𝜕𝜉
) 𝑑𝜉𝑑𝜂

𝜂

0

𝑥𝑘

0
+ 𝑑1𝑥𝑘 + 𝑑2 = ∫ ∫ 𝑓(𝜉, 𝑡𝑚)𝑑𝜉𝑑𝜂

𝜂

0

𝑥𝑘

0
,              (10) 

 

where 𝑑1 and 𝑑2 are arbitrary constants emerged in the process of integration. 

Then, we consider the nonlinear term in (10). By using the integration by parts, we have 

 

 𝑞(𝑥𝑘) ≔ ∫ ∫ (𝑢𝑚−1 𝜕𝑢𝑚

𝜕𝜉
) 𝑑𝜉𝑑𝜂

𝜂

0

𝑥𝑘

0
 

= ∫ 𝑢𝑚−1𝑢𝑚𝑑𝜂
𝑥𝑘

0
− ∫ ∫

𝜕𝑢𝑚−1

𝜕𝜉
𝑢𝑚𝑑𝜉𝑑𝜂

𝜂

0

𝑥𝑘

0
  

= ∫ 𝑢𝑚−1𝑢𝑚𝑑𝜂
𝑥𝑘

0
− ∫ ∫ ∑ 𝑐𝑛

𝑚−1𝑅𝑛
′ (𝜉)𝑀−1

𝑛=0 𝑢𝑚𝑑𝜉𝑑𝜂
𝜂

0

𝑥𝑘

0
  

= ∫ 𝑢𝑚−1𝑢𝑚𝑑𝜂
𝑥𝑘

0
− ∫ ∫ 𝐑′(𝜉)𝐜𝑚−1𝑢𝑚𝑑𝜉𝑑𝜂

𝜂

0

𝑥𝑘

0
  

= ∫ 𝑢𝑚−1𝑢𝑚𝑑𝜂
𝑥𝑘

0
− ∫ ∫ 𝐑′(𝜉)𝐑−1𝐮𝑚−1𝑢𝑚𝑑𝜉𝑑𝜂

𝜂

0

𝑥𝑘

0
  

 

where 𝐑′(𝜉) = [𝑅0
′ (𝜉), 𝑅1

′ (𝜉), 𝑅2
′ (𝜉), … , 𝑅𝑀−1

′ (𝜉)].  Thus, when we vary each 𝑥𝑘  in ( 11)  for 𝑘 ∈ {1, 2, 3, … ,𝑀}, ( 11)  can be 

expressed in the matrix form as 

 

[

𝑞(𝑥1)

𝑞(𝑥2)
⋮

𝑞(𝑥𝑀)

] = 𝐀

[
 
 
 
𝑢𝑚−1(𝑥1)𝑢

𝑚(𝑥1)

𝑢𝑚−1(𝑥2)𝑢
𝑚(𝑥2)

⋮
𝑢𝑚−1(𝑥𝑀)𝑢𝑚(𝑥𝑀)]

 
 
 
− 𝐀2

[
 
 
 
𝐑′(𝑥1)𝐑

−1𝐮𝑚−1𝑢𝑚(𝑥1)

𝐑′(𝑥2)𝐑
−1𝐮𝑚−1𝑢𝑚(𝑥2)

⋮
𝐑′(𝑥𝑀)𝐑−1𝐮𝑚−1𝑢𝑚(𝑥𝑀)]

 
 
 

.                  (11) 

 

For computational convenience, we reduce the above equation into the matrix form: 

 

𝐪 = 𝐀diag(𝐮𝑚−1)𝐮𝑚 − 𝐀2diag(𝐑′𝐑−1𝐮𝑚−1)𝐮𝑚.               (12) 

 

Consequently, for 𝑘 ∈ {1, 2, 3,… ,𝑀} by consuming (12) and the developed FIM-CBS, we can convert (10) into the matrix form 

as follows 

 

𝑤0𝐀
2(𝐮𝑚 − 𝐮𝑚−1) + ∑ 𝑤𝑗𝐀

2(𝐮𝑚−𝑗 − 𝐮𝑚−𝑗−1)𝑚−1
𝑗=1 −

1

Δ𝑡
𝐮𝑚 +

1

Δ𝑡
𝐮𝑚−1   

+ 𝐀𝐮𝑚 +  𝐀diag(𝐮𝑚−1)𝐮𝑚 − 𝐀2diag(𝐑′𝐑−1𝐮𝑚−1)𝐮𝑚 + 𝑑1𝐱 + 𝑑2𝐢 = 𝐀2𝐟 

 

or it can be simplified as 

(𝑤0𝐀
2 −

1

Δ𝑡
𝐈 + 𝐀 + 𝐀diag(𝐮𝑚−1) − 𝐀2diag(𝐑′𝐑−1𝐮𝑚−1))𝐮𝑚 + 𝑑1𝐱 + 𝑑2𝐢  

= 𝐀2𝐟 − ∑ 𝑤𝑗𝐀
2(𝐮𝑚−𝑗 − 𝐮𝑚−𝑗−1)𝑚−1

𝑗=1 + (𝑤0𝐀
2 −

1

Δ𝑡
𝐈) 𝐮𝑚−1,                     (13) 

 

where 𝐈 is the identity matrix,  𝐱 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑀]𝑇,  𝐢 = [1, 1, 1, … ,1]𝑇,  𝐀 = 𝐑̅𝐑−1, 

𝐮𝑚 = [𝑢(𝑥1, 𝑡𝑚), 𝑢(𝑥2, 𝑡𝑚),… , 𝑢(𝑥𝑀, 𝑡𝑚)]𝑇, 𝐟 = [𝑓(𝑥1, 𝑡𝑚), 𝑓(𝑥2, 𝑡𝑚),… , 𝑓(𝑥𝑀, 𝑡𝑚)]𝑇,  

 

and 𝐑′ =

[
 
 
 
𝐑′(𝑥1)

𝐑′(𝑥2)
⋮

𝐑′(𝑥𝑀)]
 
 
 

=

[
 
 
 
𝑅0

′ (𝑥1) 𝑅1
′ (𝑥1) ⋯ 𝑅𝑀−1

′ (𝑥1)

𝑅0
′ (𝑥2) 𝑅1

′ (𝑥2) ⋯ 𝑅𝑀−1
′ (𝑥2)

⋮ ⋮ ⋱ ⋮
𝑅0

′ (𝑥𝑀) 𝑅1
′ (𝑥𝑀) ⋯ 𝑅𝑀−1

′ (𝑥𝑀)]
 
 
 

. 

 

From the given boundary conditions (5), we can transform them into the vector forms by using linear combination of Chebyshev 

polynomial (2) at 𝑚𝑡ℎ iteration as follows 

 

𝑢(0, 𝑡𝑚) = ∑ 𝑐𝑛
𝑚𝑅𝑛(0)𝑀−1

𝑛=0 = ∑ 𝑐𝑛
𝑚(−1)𝑛𝑀−1

𝑛=0 = 𝐡𝑙𝐜
𝑚 = 𝐡𝑙𝐑

−1𝐮𝑚 = 𝜓1(𝑡𝑚),                (14) 

 

𝑢(𝐿, 𝑡𝑚) = ∑ 𝑐𝑛
𝑚𝑅𝑛(𝐿)𝑀−1

𝑛=0 = ∑ 𝑐𝑛
𝑚(1)𝑛𝑀−1

𝑛=0 = 𝐡𝑟𝐜
𝑚 = 𝐡𝑟𝐑

−1𝐮𝑚 = 𝜓1(𝑡𝑚),                      (15) 

 

where 𝑡𝑚 = 𝑚(Δ𝑡) for 𝑚 ∈ ℕ, 𝐡𝑙 = [1,−1, 1, … , (−1)𝑀−1] and 𝐡𝑟 = [1,1, 1,… ,1]. Finally, from (13), (14) and (15), we can 

construct the system of linear equation at the iteration  𝑡𝑚 for 𝑚 ∈ ℕ which contains 𝑀 + 2 unknowns as follows 
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[

𝐊 𝐱 𝐢
𝐡𝑙𝐑

−1 0 0

𝐡𝑟𝐑
−1 0 0

] [
𝐮𝑚

𝑑1

𝑑2

] = [

𝐀2𝐟 − 𝐬 + (𝑤0𝐀
2 −

1

Δ𝑡
𝐈)𝐮𝑚−1

𝜓1(𝑡𝑚)

𝜓2(𝑡𝑚)

],               (16) 

 

where 𝐊 = 𝑤0𝐀
2 −

1

Δ𝑡
𝐈 + 𝐀 + 𝐀diag(𝐮𝑚−1) − 𝐀2diag(𝐑′𝐑−1𝐮𝑚−1), 𝐬 = 𝟎 for 𝑚 = 1 and 𝐬 = ∑ 𝑤𝑗𝐀

2(𝐮𝑚−𝑗 − 𝐮𝑚−𝑗−1)𝑚−1
𝑗=1  

for 𝑚 > 1. Thus, the solution 𝐮𝑚 can be found by solving the system (16) with starting from 𝐮0 =
[𝜙(𝑥1), 𝜙(𝑥2), 𝜙(𝑥3),… , 𝜙(𝑥𝑀)]𝑇. We notice here that for the terminal time 𝑇, the numerical solution 𝑢(𝑥, 𝑇) for each arbitrary 

𝑥 ∈ (0, 𝐿) can be computed from 

 

𝑢(𝑥, 𝑇) = ∑ 𝑐𝑛𝑅𝑛(𝑥)

𝑀−1

𝑛=0

= 𝐑(𝑥)𝐜 = 𝐑(𝑥)𝐑−1𝐮𝑚, 

 

where 𝐑(𝑥) = [𝑅0(𝑥), 𝑅1(𝑥), 𝑅2(𝑥), … , 𝑅𝑀−1(𝑥)] and 𝐮𝑚 is the final 𝑚𝑡ℎ iteration of (16). 

 

Algorithm. The Numerical Algorithm for Solving Time-Fractional BBMB Equations 

Input:  𝛼, 𝑥, 𝐿, 𝑇, 𝑀, Δ𝑡, 𝜙(𝑥), 𝜓1(𝑡), 𝜓2(𝑡) and 𝑓(𝑥, 𝑡). 

Output:  An approximate solution 𝑢(𝑥, 𝑇). 

1:   Set 𝑥𝑘 =
𝐿

2
(cos (

2𝑘−1

2𝑀
𝜋) + 1) for 𝑘 ∈ {1, 2, 3,… ,𝑀}. 

2:   Compute 𝐱, 𝐢, 𝐡𝑙, 𝐡𝑟, 𝐈, 𝐀, 𝐑, 𝐑̅, 𝐑′, 𝐑−1, 𝐑(𝑥) and 𝑤0. 

3:   Construct 𝐮0 = [𝜙(𝑥1), 𝜙(𝑥2), 𝜙(𝑥3), … , 𝜙(𝑥𝑀)]𝑇. 

4:   Calculate the total number of iterations 𝑁 =
𝑇

Δ𝑡
. 

5:   for 𝑚 = 1 to 𝑁 do 

6:         Set 𝑡𝑚 = 𝑚(Δ𝑡). 

7:         Set 𝐬 = 𝟎. 

8:         for 𝑗 = 1 to 𝑚 − 1 do 

9:               Compute 𝑤𝑗 =
(Δ𝑡)−𝛼

Γ(2−𝛼)
((𝑗 + 1)1−𝛼 − 𝑗1−𝛼). 

10:             Compute 𝐬 = 𝐬 + 𝑤𝑗𝐀
2(𝐮𝑚−𝑗 − 𝐮𝑚−𝑗−1). 

11:        end for 

12:        Compute 𝐊 = 𝑤0𝐀
2 −

1

Δ𝑡
𝐈 + 𝐀 + 𝐀diag(𝐮𝑚−1) − 𝐀2diag(𝐑′𝐑−1𝐮𝑚−1). 

13:        Compute 𝐟 = [𝑓(𝑥1, 𝑡𝑚), 𝑓(𝑥2, 𝑡𝑚), 𝑓(𝑥3, 𝑡𝑚)… , 𝑓(𝑥𝑀, 𝑡𝑚)]𝑇. 

14:        Find 𝐮𝑚 by solving the iterative linear system (16). 

15:  end for 

16:  return 𝑢(𝑥, 𝑇) = 𝐑(𝑥)𝐑−1𝐮𝑚. 

 

4. Numerical Experiments 
 

In this section, we have applied the proposed algorithm based on the developed FIM-CBS for seeking numerical solutions 

of the time-fractional BBMB equations in order to demonstrate the efficiency and effectiveness of our scheme through several 

numerical examples which measured the accurate results by the average absolute error AAE = |𝑢∗(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)|, where 𝑢∗ and 

𝑢 are the analytical and numerical solutions. 

 

Example 1. Consider the time-fractional BBMB equation (3) with the source term 

 

𝑓(𝑥, 𝑡) =
3√𝜋𝑥4(𝑥−1)𝑡

3
2−𝛼

4Γ(
5

2
−𝛼)

+ 𝑥2𝑡
1

2 (5𝑥7𝑡
5

2 − 9𝑥6𝑡
5

2 + 4𝑥5𝑡
5

2 + 5𝑥2𝑡 − 4𝑥𝑡 − 30𝑥 + 18)  

 

subject to the initial condition  

 

𝑢(𝑥, 0) = 0,   𝑥 ∈ [0,1],                  (17) 

 

and the Dirichlet boundary conditions 

 

𝑢(0, 𝑡) = 0,   𝑢(1, 𝑡) = 0,   𝑡 ∈ (0,1].                                (18) 
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The analytical solution given by Shen and Zhu (2018) is 

𝑢∗(𝑥, 𝑡) = 𝑥4(𝑥 − 1)𝑡
3

2. In the numerical testing, we compare 

the approximate results obtained by our algorithm with a 

Crank-Nicolson linear difference scheme (CNLDS) proposed 

by Shen and Zhu (2018) which measured by AAEs for 𝛼 = 0.5 

and Δ𝑡 = 0.001 at various 𝑀 ∈ {10, 20, 40, 80} as shown in 

Table 1. We can see that our algorithm gives higher accuracy 

than the CNLDS under the same parameters and conditions. 

Moreover, we also illustrate the AAEs at the final time 𝑇 = 1 

for 𝛼 = 0.5, 𝑀 = 40 and the different time steps Δ𝑡 ∈
{0.05, 0.01, 0.005, 0.001} in Table 2 and for Δ𝑡 = 0.001, 𝑀 =
40 and the various fractional orders of derivative 𝛼 ∈
{0.1, 0.3, 0.7, 0.9} in Table 3. Finally, the graph of our 

numerical solutions 𝑢(𝑥, 𝑡) at the different times 𝑡 and the 

surface plot of our numerical solutions 𝑢(𝑥, 𝑡) whole domains 

are provided in Figure 1. 

 

Example 2. Consider the time-fractional BBMB equation (3) 

with the source term as 

 

𝑓(𝑥, 𝑡) =
2𝑒𝑥𝑡2−𝛼

Γ(3−𝛼)
+ 𝑡𝑒𝑥(𝑡3 + 𝑡 − 2)  

 

subject to the initial condition (17) and the Dirichlet boundary 

conditions 

 

𝑢(0, 𝑡) = 𝑡2,   𝑢(1, 𝑡) = 𝑒𝑡2,   𝑡 ∈ (0,1]. 
 

The analytical solution given by Esen and Tasbozan (2015) is 

𝑢∗(𝑥, 𝑡) = 𝑡2𝑒𝑥. For the numerical examination, we choose the 

parameters 𝛼 = 0.5, 𝑀 = 40 and the many time steps Δ𝑡 ∈
{0.05, 0.01, 0.005, 0.001} in order to show AAEs in Table 4. 

Table 1. AAEs for 𝛼 = 0.5, Δ𝑡 = 0.001 and 𝑀 ∈ {10, 20,40, 80} of  

Example 1 

 

𝑀 CNLDS Our algorithm 

   

10 1.841489 × 10−3 1.7810 × 10−5 

20 5.047981 × 10−4 1.7763 × 10−5 

40 1.321991 × 10−4 1.7751 × 10−5 

80 3.365747 × 10−5 1.7748 × 10−5 
   

 
Also, we vary the fractional orders of derivative 𝛼 ∈
{0.1, 0.3, 0.7, 0.9}  at Δ𝑡 = 0.001  and 𝑀 = 40  to display the 

AAEs in Table 5.  Figure 2 provides the graphical solutions of 

this problem including the graph of our numerical solutions 

𝑢(𝑥, 𝑡)  at the different times 𝑡  and the surface plot of our 

numerical solutions 𝑢(𝑥, 𝑡). 

 

Example 3. Consider the time-fractional BBMB equation (3) 

with the source term as 

 

𝑓(𝑥, 𝑡) =
𝑡1−𝛼sin(𝜋𝑥)

Γ(2−𝛼)
+ 𝜋2 sin(𝜋𝑥) + 𝜋𝑡 sin(𝜋𝑥) +

𝜋𝑡2

2
sin(2𝜋𝑥)  

 

subject to the same initial condition (17) and the Dirichlet 

boundary conditions (18). The analytical solution given by 

Zarebnia and Parvaz (2017) is 𝑢∗(𝑥, 𝑡) = 𝑡 sin(𝜋𝑥). In the 

numerical testing of this problem, we consider AAEs of this 

problem by selecting the same parameters in Example 2 which 

varies along the time steps Δ𝑡 and the fractional orders of 

derivative 𝛼 as shown in Tables 6 and 7, respectively. Finally, 

we demonstrate the plotting numerical solutions 𝑢(𝑥, 𝑡) at the 

different times 𝑡 and the surface plot of 𝑢(𝑥, 𝑡) in Figure 3. 

 
Table 2. AAEs at time 𝑇 = 1 for 𝛼 = 0.5, 𝑀 = 40 and various Δ𝑡 of Example 1 

 

𝑥 Δ𝑡 = 0.05 Δ𝑡 = 0.01 Δ𝑡 = 0.005 Δ𝑡 = 0.001 

     

0.2 1.3072 × 10−3 2.7980 × 10−5 1.4266 × 10−5 2.9342 × 10−6 

0.4 1.8644 × 10−3 3.8426 × 10−5 1.9242 × 10−5 3.8423 × 10−6 

0.6 1.3842 × 10−3 2.9035 × 10−4 1.4669 × 10−4 2.9731 × 10−5 

0.8 2.5887 × 10−3 5.4398 × 10−4 2.7512 × 10−4 5.5861 × 10−5 
     

 

Table 3. AAEs at time 𝑇 = 1 for Δ𝑡 = 0.001, 𝑀 = 40 and various 𝛼 of Example 1 

 

𝑥 𝛼 = 0.1 𝛼 = 0.3 𝛼 = 0.7 𝛼 = 0.9 

     

0.2 2.8624 × 10−6 2.9140 × 10−6 2.8699 × 10−6 2.4680 × 10−6 

0.4 4.0394 × 10−6 3.9104 × 10−6 3.9486 × 10−6 4.7687 × 10−6 

0.6 3.0072 × 10−5 2.9863 × 10−5 2.9838 × 10−5 3.0944 × 10−5 

0.8 5.6196 × 10−5 5.5998 × 10−5 5.5923 × 10−5 5.6838 × 10−5 
     

 

Table 4. AAEs at time 𝑇 = 1 for 𝛼 = 0.5, 𝑀 = 40 and various Δ𝑡 of Example 2 

 

𝑥 Δ𝑡 = 0.05 Δ𝑡 = 0.01 Δ𝑡 = 0.005 Δ𝑡 = 0.001 

     

0.2 1.4907 × 10−4 6.4013 × 10−5 4.1055 × 10−5 1.0379 × 10−5 

0.4 5.1386 × 10−4 6.1063 × 10−5 4.6138 × 10−5 1.2941 × 10−5 

0.6 9.1238 × 10−4 1.1182 × 10−5 2.3799 × 10−5 9.0593 × 10−6 

0.8 9.7423 × 10−4 3.9815 × 10−5 5.5279 × 10−6 2.2631 × 10−6 
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Table 5. AAEs at time 𝑇 = 1 for Δ𝑡 = 0.001, 𝑀 = 40 and various 𝛼 of Example 2 

 

𝑥 𝛼 = 0.1 𝛼 = 0.3 𝛼 = 0.7 𝛼 = 0.9 

     

0.2 1.1518 × 10−5 1.1292 × 10−5 4.5130 × 10−6 2.8758 × 10−5 

0.4 1.4991 × 10−5 1.4551 × 10−5 2.9661 × 10−6 5.3208 × 10−5 

0.6 1.1558 × 10−5 1.1002 × 10−5 2.4827 × 10−6 6.6751 × 10−5 

0.8 4.3173 × 10−6 3.8567 × 10−6 6.8200 × 10−6 5.6685 × 10−5 
     

 

Table 6. AAEs at time 𝑇 = 1 for 𝛼 = 0.5, 𝑀 = 40 and various Δ𝑡 of Example 3 

 

𝑥 Δ𝑡 = 0.05 Δ𝑡 = 0.01 Δ𝑡 = 0.005 Δ𝑡 = 0.001 

     

0.2 1.0218 × 10−3 1.9609 × 10−4 9.7531 × 10−5 1.9424 × 10−5 

0.4 7.5199 × 10−4 1.4293 × 10−4 7.1000 × 10−5 1.4126 × 10−5 

0.6 4.4809 × 10−4 8.8329 × 10−5 4.4082 × 10−5 8.8029 × 10−6 

0.8 9.2119 × 10−4 1.7832 × 10−4 8.8787 × 10−5 1.7698 × 10−5 
     

 

Table 7. AAEs at time 𝑇 = 1 for Δ𝑡 = 0.001, 𝑀 = 40 and various 𝛼 of Example 3 

 

𝑥 𝛼 = 0.1 𝛼 = 0.3 𝛼 = 0.7 𝛼 = 0.9 

     

0.2 1.9561 × 10−5 1.9499 × 10−5 1.9335 × 10−5 1.9232 × 10−5 

0.4 1.4256 × 10−5 1.4198 × 10−5 1.4039 × 10−5 1.3936 × 10−5 

0.6 8.7989 × 10−6 8.7996 × 10−6 8.8102 × 10−6 8.8226 × 10−6 

0.8 1.7765 × 10−5 1.7734 × 10−5 1.7658 × 10−5 1.7615 × 10−5 
     

 
(a) The solutions at different time 𝑡  

 

 

(b) The surface plot of solutions  
 

 
          

Figure 1. Graphical solutions for 𝛼 = 0.5, 𝑀 = 40 and Δ𝑡 = 0.001 of Example 1 

 

(a) The solutions at different time 𝑡  
 

 

       (b) The surface plot of solutions 

 

  
  

Figure 2. Graphical solutions for 𝛼 = 0.5, 𝑀 = 40 and Δ𝑡 = 0.001 of Example 2 
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(a) The solutions at different time 𝑡  
 

 

       (b) The surface plot of solutions 
 

  
 

Figure 3. Graphical solutions for 𝛼 = 0.5, 𝑀 = 40 and Δ𝑡 = 0.001 of Example 3 

 

5. Conclusions 
 

In this paper, we devise the accurate and efficient 

numerical algorithm based on the developed FIM-CBS in the 

general range for finding the approximate solutions of the time-

fractional BBMB equations. The fractional order derivative is 

in the sense of Caputo. The numerical experiments demonstrate 

that our method produces a much higher accuracy than the 

CNLDS under the same parameters and conditions for varying 

the numbers of discretization (see Example 1). We notice that 

it provides more accuracy even when we use a small number of 

nodal points 𝑀. Evidently, when we decrease the time step Δ𝑡, 

it furnishes more accurate results. In addition, our numerical 

algorithm gives a good performance on the fractional orders 

derivative 𝛼 ∈ (0,1) and actually it can be easily applied to 

other nonlinear fractional PDEs. An interesting direction for 

our future work is to extend our technique to solve the space-

fractional BBMB equations and other nonlinear fractional 

PDEs. 
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