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Abstract 
 

Convective flow and temperature distribution in rotating inclined composite porous and fluid layers, in which the pressure 

gradient is kept constant, is analytically studied. The fluids in all the domains are distinct in thermal conductivities, viscosities and 

densities. The flow is assumed to be steady, two dimensional, laminar and fully developed. Due to the inclusion of buoyancy forces, 

viscous and Darcy dissipation terms, the governing equations are non-linear and coupled. The solutions for region II are obtained 

by the regular Perturbation process, whereas the solutions for region I and region III are obtained by solving them as linear 

differential equations with constant coefficients. The outcomes of the governing parameters on the fluid flow are numerically 

computed and graphically depicted and inspected in detail. It is observed that increase in Coriolis force incorporated through the 

porous and rotation parameters reduces the temperature and axial velocity of fluid in the three regions. 
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1. Introduction 
 

Many recent studies contributed to the subject of 

convection in a permeable medium owing to its enormous 

practical engineering and scientific applications such as, drying 

technology, energy accumulator devices, and packed-bed heat 

exchangers, nuclear waste respiratory and geo-thermal devices.  

Fluid flow is also a normal phenomenon within a revolving 

structure. The velocity, density, volume, etc, will have an effect 

on the fluid particles internally and rise as the fluid rotates. 

Fluid rotation can be limited, but cannot be disregarded. Flow 

in a revolving system has ample industrial and technical 

applications. One fluid occupying the entire closure case was 

studied in most of the existing research.  The fluid mechanism 

 
also requires duo or more distinct immiscible fluids and sheets 

of one liquid over another layer in practical conditions. During 

composition and execution of fluid models in low gravity areas, 

the behavior of two fluid flow is of great use. Even a 

multilayered fluid arrangement gives a modified model for 

growing high quality crystals which involve the buoyancy-

driven convective process. Perception of the convective 

interaction of composite porous and fluid layers requires 

modeling of such systems. Various problems in two phase flow 

considering porous and rotation parameter have been studied 

by researchers like Bian, Vasseur, Bilgen, & Meng (1996), 

Chauhan and Rema Jain (2005), Hadidi and Bennacer (2016), 

Karuna Sree Chitturi, Sri Ramachandra Murty Paramsetti, & 

SobhanBabu (2020). Malashetty, Umavathi, and Pratap Kumar 

(2001), Malashetty et al. (2004), Simon Daniel, & Shagaiya 

(2013) and Sri Ramachandra Murty, Balaji Prakash & Karuna 

Sree (2018). Umavathi (2005) investigated the effect of 

composite couple stress fluid and viscous fluids. Velocity and 
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temperature effects in an inclined channel of composite fluid 

layer and porous layers was analysed by Malashetty (2005). 

The unsteady flow and heat transfer of porous fluid between 

viscous fluids were studied by Umavathi (2010). Rashidi 

(2012) studied chemically reacting combined heat and mass 

transfer effects along a horizontal surface. Kalili (2015) 

analyzed unsteady convective heat and mass transfer of a 

power-law pseudo plastic nanofluid on a stretching wall. 

Armaghani (2016) analyzed numerically, heat transfer and 

entropy generation in a baffled L-shaped cavity of water-

alumina nanofluid. Mohebbi (2017) analyzed numerical 

simulation of natural convective flow of a nanofluid in an L-

shaped enclosure having an internal heating obstacle. Also 

Mohebbi (2018) investigated numerical simulation of forced 

convection of three different nanofluids in expanded surfaces. 

Recently, Lu (2018) studied flow and temperature 

characteristics of nano fluid between two clear fluids.  The 

peristaltic propulsion of nanofluid through a porous rectangular 

duct was studied by Riaz (2019) and peristaltic fow of nano 

particles through a curved channel with second-order partial 

slip and porous medium was investigated by Riaz (2020). 

Houman (2020) studied numerical modeling of nanoparticle 

migration with effects of shape of particles and magnetic field 

inside a porous enclosure. Zeeshan (2020) analysed 

nonspherical nanoparticles in electromagnet hydrodynamics of 

nanofluids through a porous medium between eccentric 

cylinders. Unsteady flow of two incompressible Maxwell fluids 

between infinite horizontal parallel plates in a porous medium 

is studied by Constantin (2021). Even though the study on 

convective flow and temperature distribution through 

composite porous and fluid layers with inclined geometry is of 

use, particularly in geophysical systems, there appears to be a 

very limited number of researchers, notably, Malashetty, 

Umavathi, and Kumar (2005), Umavathi, Liu, Kumar and 

Meera (2010), Sheikholeslami and Ganji (2014) and Lu, 

Farooq, Hayat, Rashidi and Ramzan (2018). The aim of the 

present paper is to study the effect of the parameters such as 

inclination angle, rotation parameter and porous parameter etc., 

on MHD convective flow and heat transfer through an inclined 

rotating system of composite fluid and porous layers. 

 

2. Materials and Methods 
 

The physical representation of the problem is shown 

in Figure 1. It is composed of two plates which are inclined, 

parallel and infinite in length along x and z-directions. The 

upper and lower plate temperatures, 𝑇𝑤1
 and 𝑇𝑤2

are kept 

constant. ‘Φ’ is the angle made by the inclined channel with the 

   
 

Figure 1. Physical configuration 

 

horizontal plane. The regions I and III with 0h y   and 

2h y h   are loaded with clear viscous fluid with viscosity

1 , density 
1 and thermal conductivity K1. The region II with 

0 y h   is filled with porous material of permeability k, 

saturated with viscous fluid of density
2 , viscosity  

2  and 

thermal conductivity K2. The permeable medium is considered 

to be homogeneous and isotropic. The three fluids have 

constant transport properties with laminar flow, fully developed 

and are assumed to be in a steady state. The flow in the channel 

is navigated by temperature gradient 
1 2w wT T T   and 

pressure gradient p

x

 
 
 

 which is constant and is not affected 

by the existence of heat transfer. When rotated with an angular 

velocity, mathematically the problem involves the coupling of 

Navier-Stokes equation (for fluid region) with Brinkman-

extended Darcy equation (for porous medium) with the 

corresponding conditions at the common boundary of the fluid 

and porous layer. In order to get realistic predictions, we have 

considered Brinkman extended Darcy-Lapwood model. The 

entire system is rotated with the angular velocity , about the 

y-axis. Therefore, for Boussinesq fluids the equations of motion 

and energy following Malashetty, Umavathi, and Kumar 

(2005) are: 
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Region-II  
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Region-III 
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where ui and wi are the x and z components of fluid velocity, where the subscripts i = 1, 2, 3 represents I, II, III phase values 

respectively. The thermal expansion coefficient is βi and Ti is the temperature. The velocity vanishes at the walls, because of the    

no-slip condition. Considering the above conditions, the respective boundary and interface conditions on velocity and temperature 

distributions are: 
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Here average velocity is indicated by 1u . 

Applying the above transformations, the equations (1 to 9) transform to: 
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Region-II 
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The dimensionless forms of the interface and boundary conditions are: 
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Considering 1 1 1q u i  ,  2 2 2i i iq u i    for i = 0, 1 and 3 3 3q u i  , equations (13 to 21) in complex form are: 

 

Region-I 
2

21
1 12

(sin ) 2
Re

d q Gr
P i R q

dy
     (23) 

2

1

2
0.

d

dy


  (24) 

 

Region-II 
2

22
2 2 22 2

2

(sin ) 2 , (25)
Re

d q mGr
q mP i R q

dy nb h


      (25) 

 
2

2
2 22 2

2

Pr ( ) 0 26
d K

Ec q q
dy m h


   (26) 

 

Region-III 
2

23
3 32

(sin ) 2
Re

d q Gr
P i R q

dy
     (27) 

2

3

2
0.

d

dy


  (28) 

2
q is the complex conjugate of q2. 
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The respective boundary and interface conditions are: 
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2.1 Solutions of the problem 
 

The governing energy and momentum equations for Region I and III are linear ordinary differential equations. Hence the 

solutions can be obtained using the methods of ordinary differential equations. The equations for Region I and III are 
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For Region II the governing energy and momentum equations are non-linear and coupled, so regular Perturbation Method is applied 

to obtain approximate solution. The perturbation parameter ε = Pr.Ec (which is small), is used as the perturbation quantity. The 

solutions for Region II are considered as 

......),(),(),( 1100  iiiiii qqq   (35) 

where 𝑞𝑖0, 𝜃𝑖0 are the solutions for the case when ε = 0 and 𝑞𝑖1, 𝜃𝑖1are perturbed quantities related to 𝑞𝑖0, 𝜃𝑖0 respectively. 

Substituting the above solutions in equations (25) and (26) and equating the factors of identical existing powers of ε, we obtain 

equations of zeroth-order and first-order approximations for Region II as follows: 
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Equations of first-order approximation 
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Solutions of equations (31 to 34) and (36 to 39) using boundary conditions (40) and (41) are: 
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



 

   
 

(49) 

3 3 4

3 3 4 3 4

[( ) ( )] (50)

[( )sin( ) ] (51)

Ry Ry

Ry Ry

u d e d e cos Ry

w d e d e Ry g g y





 

   

 
(50) 

3 3 4

3 3 4 3 4

[( ) ( )] (50)

[( )sin( ) ] (51)

Ry Ry

Ry Ry

u d e d e cos Ry

w d e d e Ry g g y





 

   
 

(51) 





1 1

1 1 1 1

1 1 1 1

2V y -2V y 4 3 2

30 31 32 2 41 42 43

V y V y V y V y

33 2 34 2 35 2 36 2

-V y -V y -V y -V y

37 2 38 2 39 2 40 2

21

4

7

4

8 H e +H e +H cos(2V y)H y +H y +H

+H e ysin(V y)+H e sin(V y)+H e ycos(V y)+H e cos(V y)

+H e ysin(V y)+H e sin(V y)+H e ycos(V y)+H e cos(V y)

+i H

d y d y   

 

 

   

1 1 1

1 1 1

1 1

V y V y V y

2 45 2 46 2 47 2

V y -V y -V y

48 2 49 2 50 2

-V y -V y

51 2 52 2

sin(2V y)+H e ysin(V y)+H e sin(V y)+H e ycos(V y)

+i H e cos(V y)+H e ysin(V y))+H e sin(V )

+i H e ycos(V y)+H e cos(V 2y) 5

y

 

 

 

 

 

 

 

 

 

 

(52) 

1 1 1

1 1

1 1

1 1

V y -V y -2V y2V1y 3 4

21 9 10 2 5 7 13 17

V y V y

23 2 32 2 41 2 50 2

V y V y2

75 76 77 78 2 79 2

-V y -V y

80 2 81 2

(d e +d e )cos(V y)-R e -R e +R y +R y

+R cos(2V y)-R e ysin(V y)+R e ycos(V y) -R sin(2V y)

+R +R y+R y +R e cos(V y)+R e sin(V y)

+R e cos(V y)+R e sin(V y)+

u 

 

1

1 1 1

-V y

82 2

-V y -V y -V y2 2

83 2 84 2 85 2

R e ycos(V y)

+R e ysin(V y)+R y e cos(V y)+R y e sin(V y) 53
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91 2 92 2
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+R +R y+R y ++R e cos(V y) +R e sin(V y)

+R e cos(V y)+R e sin(V

w 

 

1

1 1 1

-V y

93 2

-V y -V y -V y2 2

94 2 95 2 96 2
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 +R e ysin(V y)+R y e cos(V y)+R y e sin(V y) 54
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The constants involved in Equation 46 to Equation 54 

are not given for conciseness and solved by taking the 

parameters as (n, Re, b, P) = (1.5, 5, 1 -5). In the   Figures 2 to 

8, excluding the differing one, all other values are taken from 

the set (, h, Gr, R, m, k, K, λ) = ( 30°, 1, 5, 1, 0.5, 0.5, 1, 2 ). 

In addition to analyze temperature distribution and 

impact of velocity on fluid flow it is also important to observe 

the effect of physical properties such as skin friction and 

Nusselt number.   

The skin friction at the upper plate is given by 

(
𝑑𝑢1

𝑑𝑦
)

𝑦=2
 = 𝜏𝑇  and  

The skin friction at the lower plate is given by  

(
𝑑𝑢3

𝑑𝑦
)

𝑦=−1
 = 𝜏𝐵. 

Similarly the rate of heat transfer from the wall to the 

fluid, knowing the temperature distribution, at the upper 

plate (𝑞𝑇) and lower plate (𝑞𝐵) is given by 
 

(
𝑑Ɵ1

𝑑𝑦
)

𝑦=2
 = 𝑞𝑇 , (

𝑑Ɵ3

𝑑𝑦
)

𝑦=−1
 = 𝑞𝐵 

 

3. Results and Discussion 
 

Fluid flow and heat transfer in three regions in an 

inclined channel consisting of composite porous and fluid 

layers is analysed. The impact of porous parameter  on 

velocity field is represented in Figures 2(a) and 2(b). It is 

noticed that as the value of    increases, both the axial and 

transverse velocities decrease in all the regions. The velocity 

fields for region I and region III, which consist of clear viscous 

fluids, are large compared to the region II, which consists of 

porous matrix. The porous matrix in region II drags the fluid 

back on either side of the porous layer. Further it is interesting 

to note that the minimum of the velocity occurs at the middle 

of the region II. There are two maxima one each in region I and 

region II. It is also found that the presence of two fluid layers 

on either side of the porous layer increases the mass flow rate 

in the porous medium. This indicates that the porous frame 

exerts a notable effect on the velocity field. The impact of the 

rotation parameter R on velocity field is represented in Figures 

3(a) and 3(b). It is observed that axial velocity decreases with 

increased rotation due to the Coriolis force. Also it is noticed 

that as the rotation parameter R increases in (0, 1.65), the 

transverse velocity also increases, but decreases beyond the 

range as R increases. Figures 4(a), 4(b); 5(a) ,5(b) ; 6(a) , 6(b) 

and  7(a), 7(b)    indicate the effect of Grashof  number Gr, angle 

of inclination ɸ, ratio of viscosities m and the ratio of heights 

h,  showing that as the respective parameter values increase 

both the axial and transverse velocities increase. Further, it is 

noticed that for all the parameters the graphs are symmetric in 

region I and III, and the velocity in the porous region is less 

when compared with viscous layers.   
 

 
Figure 3. Velocity distribution of R (a) Axial (b) Transvers 

 

 
 

Figure 2. Velocity distribution of λ (a) Axial (b) Transverse
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Figure 4. Velocity distribution of Gr (a) Axial (b) Transverse 

 
Figure 5. Velocity distribution of ɸ (a) Axial (b) Transverse 

 
Figure 6. Velocity distribution of m (a) Axial (b) Transverse 

 
Figure 7. Velocity distribution of h (a) Axial (b) Transverse 
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Figures 8(a) to 8(f) show the effect of various 

physical parameters on the temperature field. Temperature 

profiles are linear for region I and III and non-linear for region 

II for all governing parameters. Figures 8(a), 8(b) and 8(f) 

display the effect of porous parameter , rotation parameter R 

and the ratio of heights h on temperature. The increasing values 

of , R and h reduce the temperature in region II.  Figures 8(c), 

8(d) and 8(e) indicate the effect of Grashof number Gr, angle 

of inclination ɸ and of ratio of viscosities m showing that as the 

values  of  Gr,  ɸ  and  m  increase, the temperature increases in  

region II.  

The numerical values of skin friction and Nusselt 

number are given in Table.1 It is noted that the rate of heat 

transfer is invariable for upper and lower plates. As the values 

of parameter λ increase, the skin friction increases for the upper 

plate and decreases for lower plate. As the value of R increases 

up to 1.6, the skin friction for the upper and lower plate 

increases and then decreases. For the parameters Gr, ɸ, m and 

h, as the values increase the skin friction for upper plate 

decreases and increases for the lower plate. 

 
 

 
Figure 8(i). Temperature distribution of (a) λ (b) R (c) Gr (d)ɸ 

 

 
Figure 8(ii). Temperature distribution of (e) m (f) h 
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Table 1. Skin friction and nusselt number at both upper and lower plates with different physical parameters 

 

Physical 

parameter 

Skin friction 

at the upper plate (𝜏𝑇) 

Skin friction 

at the lower plate (𝜏𝐵) 

Nusselt number at the 

upper plate (𝑞𝑇) 

Nusselt number at the 

lower plate (𝑞𝐵) 

     

λ = 2 -3.08121 0.607441 0.66667 0.66667 

λ = 4 -2.78249 0.372212 0.66667 0.66667 

λ = 6 -2.68386 0.288432 0.66667 0.66667 
λ = 8 -2.63969 0.250498 0.66667 0.66667 

R = 1 -3.08121 0.607441 0.66667 0.66667 

R = 1.5 -0.67573 1.606712 0.66667 0.66667 
R = 2 -0.21733 1.605959 0.66667 0.66667 

R = 3 -0.31824 0.131480 0.66667 0.66667 

R = 4 -0.77626 0.048277 0.66667 0.66667 
Gr =5 -3.08121 0.607441 0.66667 0.66667 

Gr =10 -3.35113 0.617434 0.66667 0.66667 

Gr =15 -3.62104 0.627427 0.66667 0.66667 
Gr =20 -3.89096 0.637420 0.66667 0.66667 

ɸ = 0 -2.81130 0.597448 0.66667 0.66667 

ɸ = 30 -3.08121 0.607441 0.66667 0.66667 
ɸ = 60 -3.27880 0.614757 0.66667 0.66667 

ɸ = 90 -3.35113 0.617434 0.66667 0.66667 

m = 0.5 -3.08121 0.607441 0.66667 0.66667 
m =1 -3.39093 0.855358 0.66667 0.66667 

m = 1.5 -3.58779 1.010610 0.66667 0.66667 

m = 2 -3.72364 1.116667 0.66667 0.66667 

h = 0.1 -2.56865 0.189271 0.66667 0.66667 

h = 0.2 -2.61481 0.229074 0.66667 0.66667 

h = 0.4 -2.72173 0.320782 0.66667 0.66667 
h = 0.5 -2.78249 0.372212 0.66667 0.66667 

h = 0.8 -2.97422 0.527970 0.66667 0.66667 
     

 

4. Conclusions  
 

It is perceived that the impact of the porous and 

rotation parameters is to retard the temperature, axial and 

transverse velocities in three regions. The increase in buoyancy 

force incorporated through Grashof number and the angle of 

inclination is to enhance the temperature, axial and transverse 

velocities for the three layers.  The flow and thermal aspects of 

the fluids in the channel are enhanced by an increase in the ratio 

of viscosities of the fluids and the ratio of heights of the three 

regions. The results obtained can be used in heat transfer 

aspects associated with the multi layer fluids, such as porous or 

clear or viscous. The  applications include both geophysical and 

industrial fields, such as thermal energy storage system, flow 

and heat transfer behavior of lubricants in a porous journal 

bearings and porous rollers, tertiary recovery, groundwater 

hydrology, reservoir engineering, for purification and filtration 

processes in chemical engineering, to study seepage of water in 

river beds, the underground water resources in agriculture 

engineering, and many others where  porous matrix is framed 

next to  a clear fluid.  
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