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Abstract 
 

A spherical fuzzy set is a generalization of picture fuzzy sets, intuitionistic fuzzy sets, and fuzzy sets in which the 

square sum of the membership, non-membership, and neutrality values is at most one. The correlation coefficient is a crucial tool 

in fuzzy/non-standard fuzzy theory and has been applied in various fields such as clustering, pattern recognition, medical 

diagnosis, decision-making, etc. The existing correlation coefficients for spherical fuzzy sets give only the correlation degree and 

do not express the nature or direction of correlation between the spherical fuzzy sets. So, in this study, we propose two 

correlation coefficients for spherical fuzzy sets, which not only give the strength of correlation between two spherical fuzzy sets 

but also tell us whether the two spherical fuzzy sets are positively correlated or negatively correlated. We also discuss several 

properties of these correlation coefficients. We apply these correlation coefficients to solve a pattern recognition problem in the 

spherical fuzzy environment and compare the results with some existing measures. 
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1. Introduction  
 

 The concept of the fuzzy set (FS) theory was put 

forward by Zadeh (1965) for handling imprecise and vague 

information. In an FS, each element is assigned a membership 

value lying between 0 and 1, indicating its degree of 

belongingness to the set. FSs have been applied in many fields 

such as pattern recognition, medical diagnosis, clustering, etc. 

Since in an FS, the non-membership value of an element 

cannot be chosen independently, so Atanassov (1986) 

introduced the concept of intuitionistic fuzzy sets (IFSs). In an 

intuitionistic fuzzy set (IFS), each element has a membership 

value and a non-membership value lying in the interval [0, 1]  

with their sum less or equal to one. This restriction on the sum 

of membership values limits the scope of IFSs and so Yager 

(2013) proposed the concept of Pythagorean fuzzy sets 

(PFSs). In a PFS, each element has a membership value and a 

non-membership value lying in the interval [0, 1] with their 

square sum less or equal to one. Though PFSs are more robust 

 
than FSs and IFSs they cannot handle the situations in which 

the square sum of membership grades exceeds one. So Yager 

(2017) introduced generalized orthopair fuzzy sets and termed 

them as q-rung orthopair fuzzy sets (q-ROPFSs). In a q-rung 

orthopair fuzzy set (q-ROPFS) each element has a 

membership value and a non-membership value lying in the 

interval [0, 1] with their qth power sum less or equal to one. 

But all of these extensions of FSs lack an important concept 

i.e., degree of neutrality which plays an important role in 

many decision-making problems such as medical diagnosis, 

personnel selection, human voting, etc. So, realizing this a 

new generalization of FSs known as picture fuzzy sets (PIFSs) 

were suggested by Cuong and Kreinovich (2013).  In a picture 

fuzzy set (PIFS) each element has a membership value, a non-

membership value, and a neutrality value lying in the interval 

[0, 1] with their sum less or equal to one.  

Like IFSs, the scope of PIFSs is also limited due to 

restriction on the sum of membership values. Realizing this, 

Mahmood, Ullah, Khan, and Jan (2019) proposed the concept 

of spherical fuzzy sets (SFSs). In a spherical fuzzy set (SFS), 

each element is characterized by a membership, non-

membership, and neutrality degree with the square sum of the 

membership, non-membership, and neutrality less or equal to 
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one. This means that the space of SFSs is relatively broader 

than the space of FSs, IFSs, PFSs, q-ROPFSs, and PIFSs. The 

spherical fuzzy (SF) TOPSIS along with its utility in Hospital 

location selection was developed by Kahraman, Kutlu, Cevik, 

and Oztaysi (2019). Liu, Zhu, and Wang (2019) proposed a 

new multi-attribute decision-making (MADM) method in SF 

environment for a research and development project problem. 

Kutlu and Kahraman (2020a) introduced the Quality Function 

Development (QFD) in SF setting. The classical Analytical 

Hierarchical Process (AHP) was extended to SF environment 

by Gundogdu and Kahraman (2020b). A SF entropy measure 

and its application in MADM was proposed by Aydogdu and 

Gul (2020). By combining the AHP and TOPSIS, Mathew, 

Chakrabortty, and Ryan (2020) introduced a novel method in 

SF environment for an advanced manufacturing system 

selection problem. The classical VlseKriterijumska 

Optimizacija I Kompromisno Resenje (VIKOR) method was 

extended to SF environment by Kutlu and Kahraman (2019). 

Kutlu (2020) extended the traditional Multi-Objective 

Optimization by a Ratio Analysis plus the Full Multiplicative 

Form (MULTIMOORA) to SF settings.  

Application of some SF distance and similarity 

measures are available in the literature (Khan, Kumam, 

Deebani, Kumam, & Shah, 2020; Shishavan, Kutlu, 

Farrokhizadeh, Donyatalab, & Kahraman, 2020; Wei, Wang, 

Lu, Wu, & Wei, 2019). Ashraf, Abdullah, and Mahmood 

(2020) introduced some Dombi aggregation operators for 

SFSs and applied them in group decision-making. Some 

entropy-based Logarithmic aggregation operators in SF theory 

were proposed by Jin, Wu, Sun, Zeng, Luo, and Peng (2019). 

Some SF t-norms and t-conorms were introduced by Ashraf, 

Abdullah, Aslam, Qiyas, and Kutbi (2019). Some similarity 

measures and information measures for SFSs along with their 

applications were introduced by Mahmood, Ilyas, Ali, and 

Gumaei (2021). The application of some SF similarity 

measures in decision-making was shown by Rafiq, Ashraf, 

Abdullah, Mahmood, and Muhammad (2019). Some SF 

aggregation operators with their applicability in decision-

making were suggested by Khan, Mahmood, and Ullah 

(2021). Mahmood et al., (2019) also proposed the concept of 

T-spherical fuzzy sets (T-SFSs) in which the sum of tth power 

of membership, non-membership, and neutrality values is at 

most one. Some recent studies related to T-SFSs and their 

diverse applications are available in the literature (Mahmood, 

& Jan, 2018; Ullah, Hassan, Mahmood, Jan, & Hassan, 2019; 

Ullah, Ullah, Mahmood, Jan, & Ahmad, 2020; Zedam, Jan, 

Rak, Mahmood, & Ullah, 2020). The present study is related 

to the correlation coefficient for SFSs. The main contributions 

of this study are: 

1.We propose two correlation coefficients for SFSs 

that receive their values in [-1, 1] and therefore give both the 

strength of correlation as well as the nature of the correlation 

between the SFSs. 

2.We discuss their various properties. 

3.We compare the suggested correlation coefficients 

with the existing correlation coefficients in the SF 

environment through the linguistic hedge aspect. 

4.We demonstrate the application of the suggested 

correlation coefficients in pattern recognition and contrast the 

performance with the existing SF correlation coefficients. 

 

 

2. Correlation Coefficients and Their Applications 
 

In this section, we study the importance of 

correlation coefficients and their applications. 

The correlation coefficient is used to describe the 

relationship between two objects. In fuzzy theory, the 

correlation coefficient is vital due to its application in 

MADM, pattern recognition, clustering, etc. Chiang and Lin 

(1999) introduced a correlation coefficient for FSs based on a 

statistical viewpoint. This correlation coefficient provides 

both strength as well as the nature of the correlation between 

two FSs. Chaudhuri and Bhattacharya (2001) introduced 

Spearman’s rank-type correlation coefficient for FSs. By 

using Pearson’s correlation coefficient, Wu and Hung (2016) 

introduced a method for calculating the correlation of interval 

fuzzy data. A generalized fuzzy correlation coefficient with its 

application in the ranking of Primary Health Centers was 

given by Sharma and Singh (2019).  

The informational energy and correlation coefficient 

for IFSs was introduced by Gerstenkorn and Manko (1991). 

But this correlation coefficient for IFSs gives only the degree 

of correlation and not the nature of correlation. A correlation 

coefficient for IFSs indicating both nature and degree was 

proposed by Hung (2001). Some other studies concerning the 

IF correlation coefficients with their applicability in medical 

diagnosis, pattern recognition, clustering, etc. are available in 

the literature (Ejegwa & Onyeke, 2020; Hong & Hwang, 

1995; Huang & Guo, 2019; Hung & Wu, 2002; Kumar, 2019; 

Liu, Shen, Mu, Chen, & Chen, 2016; Mitchell, 2004; Thao, 

Ali, & Smarandache, 2019). 

Du (2019) proposed q-ROPFSs correlation 

coefficient on both bounded and unbounded continuous 

universes. Recently, Singh and Ganie (2020) introduced some 

robust correlation coefficients in the Pythagorean fuzzy 

environment and demonstrated their application in MADM, 

medical diagnosis, clustering, and pattern recognition. Based 

on a statistical viewpoint, Singh and Ganie (2021a) introduced 

some correlation coefficients for q-ROPFSs.  

In the picture fuzzy (PIF) theory, Singh (2015) 

introduced two correlation coefficients with their applications 

in bidirectional approximate reasoning and clustering analysis. 

However, the PIF correlation measures due to Singh (2015) 

indicate only the strength of correlation between two PIFSs 

and do not tell us whether the two PIFSs are positively or 

negatively correlated. So, to find the nature of the correlation 

between two PIFSs, Ganie, Singh, and Bhatia (2020) proposed 

two correlation coefficients that express both nature and 

degree of correlation between two PIFSs. They also utilized 

these correlation coefficients for solving some problems 

related to pattern recognition, clustering, and medical 

diagnosis. A novel PIF correlation with its application in 

classification and decision-making was proposed by Singh 

and Ganie (2021b). For SFSs, Mahmood et al. (2021) 

developed correlation coefficients and applied them in pattern 

recognition and medical diagnosis.  

Some novel methods of constructing the correlation 

coefficients from similarity and dissimilarity functions were 

suggested by Batyrshin (2019). The definitions of association 

measures that generalize Pearson's correlation coefficient as 

well as the general methods for constructing such measures
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were proposed by Batyrshin (2015b). Some similarity-based 

correlation coefficients for binary data were introduced by 

Batyrshin, Ramirez, Batyrshin, and Solovyev (2020). 

Batyrshin (2015a, 2019) studied the similarity measures and 

construction of association measures on [0, 1]. 

Most of the existing correlation coefficients in 

fuzzy/non-standard fuzzy theory receive their value in [0, 1] 

and thus indicate only the degree of correlation and remain 

silent about the nature of correlation. From an application 

point of view, a correlation coefficient indicating both degree 

and nature of correlation is more suitable than the correlation 

coefficient indicating only the degree of correlation. Also, the 

correlation coefficients for SFSs given by Mahmood et al.

 (2021) do not inform us about the nature of the correlation 

between two SFSs. So, keeping these points in mind, we, in 

this study, propose two novel correlation coefficients for 

SFSs. These correlation coefficients indicate both nature as 

well as the strength of correlation between two SFSs.  

The content of the paper is structured as follows. 

Section 3 covers the preliminary concepts. Section 4 

introduces two novel correlation coefficients in SF settings. A 

comparative analysis based on linguistic hedges is shown in 

Section 5. The application and advantage of the proposed 

correlation coefficients in pattern recognition are shown in 

Section 6. Finally, Section 7 concludes the paper. 

 

 

3. Preliminaries 
 

In this section, we introduce the basic definitions of fuzzy and non-standard FSs. 

 

Definition 1. (Zadeh, 1965) A fuzzy set G in a universe of discourse  is defined as 

 

where  is a membership function, and  is the membership degree of  in the set G. 

 

Definition 2. (Atanassov, 1986) An intuitionistic fuzzy set G in a universe of discourse  is given as 

 
where  are the membership and non-membership functions respectively. Here,  

represents the membership degree,  represents the non-membership degree of the element  in the set G, and 

. 

 

Definition 3. (Cuong & Kreinovich, 2013) A picture fuzzy set G in a universe of discourse  is given as 

 
where  are the membership, non-membership, and neutrality functions 

respectively. Here,  represents the membership degree,  represents the non-membership degree,  

represents the neutrality degree of the element  in the set G, and . 

 

Definition 4. (Kutlu Gündoğdu & Kahraman, 2020b) A spherical fuzzy set G in a universe of discourse  is 

given as 

 
where  are the membership, non-membership, and neutrality functions 

respectively. Here,  represents the membership degree,  represents the non-membership degree,  

represents the neutrality degree of the element  in the set G and . 

Also, the degree of refusal of an element  in the spherical fuzzy set G is given by 

. 

 

Definition 5. (Mahmood et al., 2021) The two correlation coefficients for spherical fuzzy sets are given as:  

                                                             (1) 
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                                                          (2) 

 

4. New Correlation Coefficients for SFSs 

 
In this section, we introduce some novel SF correlation coefficients. 

Let V(T) denote the set of all SFSs in the universe of discourse  throughout this paper. Here we 

propose two correlation coefficients for SFSs, which, together with strength, also express the nature of the correlation between 

two SFSs.  

 

Definition 5. For any , a correlation coefficient based on membership, non-membership, and neutrality degree is 

defined as 

,                                                                                                                                 (3) 

where   

 , 

 , , , 

, , , . 

 

Definition 6. For any , a correlation coefficient based on membership, non-membership, neutrality, and refusal 

degree is defined as 

,                                                                                                                    (4) 

where  , ,  , and the 

rest of the terms are the same as in Equation (3).                                                                                              

Next, we discuss the properties of the proposed SF correlation coefficients , and  in the following: 

 

Theorem 1. For any  , we have, 

(1)  

(2)  

(3) , if . 

 

Proof. (1) It is obvious. 

(2) By Cauchy Schwarz inequality, we have 
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            . 

Similarly,  and  

So, , 

i.e., . 

(3) Let , i.e., , then we have 

  

        

         . 

Similarly,  and . Therefore, . 

 

Theorem 2. For any  , we have, 

(1)  

(2)  

(3) , if . 

 

Proof. On the same lines as that of Theorem 1. 

 

5. A Comparative Study based on Linguistic Hedges 
 

In this section, we compare the suggested SF correlation coefficients with the existing SF correlation coefficients by 

using linguistic hedges. 

 

Definition 10. (Mathew et al., 2020) For any , the nth power of G, where n is any positive real number is defined as 

 

 

Example 1. Consider an SFS G in  as  

. 

By considering the above definition of the modifier of an SFS, we define the SFSs 

LARGE = G,  

Very LARGE = G2,  

Very very LARGE = G4,  

Not very LARGE = G2’ and More or less LARGE =  . 

We use these SFSs to compare our proposed methods with some existing ones for calculating the correlation coefficients. The 

comparison results are given in Tables 1-3. The following notations are used in Tables1-3. 

LARGE: L.  

Very LARGE: V.L.   

Very very LARGE: V.V.L.   

More or less LARGE: M.L.L. 

Not Very LARGE: N.V.L. 

From the characterization of linguistic variables, a correlation coefficient K should satisfy the following requirements. 
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                                                                               (5) 

From Tables 2-3, we observe that   

 

 

 

 

 

 

 

 
Thus, we observe that only the suggested SF correlation coefficients CG1 and CG2 satisfy all the conditions given in 

Equation (5). On the other hand, the existing SF correlation coefficients CMIAG1 and C MIAG2 fail to satisfy all the requirements 

given in Equation (5). This shows that from a linguistic hedge aspect, the suggested SF correlation coefficients are more effective 

than the available SF correlation coefficients. 

 

Table 1. Values of the correlation coefficients CMIAG1 and C MIAG2. 

 

 M.L.L. L. V.L. V.V.L. N.V.L. 

      

M.L.L. 1.0000 0.9636 0.8798 0.8020 0.9566 
L. 0.9636 1.0000 0.9728 0.9187 0.9596 

V.L. 0.8798 0.9728 1.0000 0.9811 0.8976 

V.V.L. 0.8020 0.9187 0.9811 1.0000 0.8157 
N.V.L. 0.9566 0.9596 0.8976 0.8157 1.0000 

      

 

Table 2. Values of the correlation coefficient CG1 

 

 M.L.L. L. V.L. V.V.L. N.V.L. 

      

M.L.L. 1.0000 0.9917 0.9448 0.8409 0.8455 

L. 0.9917 1.0000 0.9785 0.8972 0.8768 
V.L. 0.9448 0.9785 1.0000 0.9641 0.8982 

V.V.L. 0.8409 0.8972 0.9641 1.0000 0.8623 

N.V.L. 0.8455 0.8768 0.8982 0.8623 1.0000 
      

 

Table 3. Values of the correlation coefficient CG2 

 

 M.L.L. L. V.L. V.V.L. N.V.L. 

      

M.L.L. 1.0000 0.9840 0.9375 0.8580 0.8630 

L. 0.9840 1.0000 0.9810 0.9162 0.9047 

V.L. 0.9375 0.9810 1.0000 0.9709 0.9236 
V.V.L. 0.8580 0.9162 0.9709 1.0000 0.8946 

N.V.L. 0.8630 0.9047 0.9236 0.8946 1.0000 
      

 

6. Application in Pattern Recognition 
 

In this section, we discuss the application of our proposed SF correlation coefficients in pattern recognition. 

Classifying an unknown pattern into some known patterns is referred to as pattern recognition. Here we utilize our proposed SF 

correlation coefficients for solving some problems of pattern recognition and contrast the results with the existing SF correlation 

coefficients. First, we formulate a pattern recognition problem in the SF environment. 

 

Problem: Given some known patterns  and an unknown pattern H in the form of SFSs as  
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Aim: To classify the unknown pattern H into one of the known patterns . 

 

Recognition principle: The unknown pattern H can be assigned to the known pattern with which it has maximum correlation. 

Now, we solve some pattern recognition problems in view of SF information with the help of our proposed SF correlation 

measures given in Equations (3) and (4). Furthermore, we compare the results with the existing SF correlation measures given in 

the Equations (1)-(2). 

 

Example 1. (Ganie et al., 2020) Consider three known patterns , and an unknown pattern H in the form of SFSs as 

, 

, 

 and 

. 

The calculated values of the SF correlation measures between the known patterns , and the unknown 

pattern H are summarized in Table 4 and also shown in Figure 1. 

 
Table 4. Calculated values of various SF correlation measures regarding Example 1. 
 

 (G1, H)   (G2, H)  (G3, H)  Result 

     

CMIAG1  (Mahmood et al., 2021) 0.9815 0.9432 0.9373 G1 

CMIAG2 (Mahmood et al., 2021) 0.9776 0.9410 0.9329 G1 

CG1 (Proposed) 0.3281 0.2549 -0.5880 G1 

CG2 (Proposed) 0.3634 0.2932 -0.3626 G1 
     

 

From Table 4, it is clear that all the SF correlation measures given in the Equations (1)-(4) assign the unknown pattern 

H to the known pattern G1. This shows that our proposed SF correlation measures are consistent with the existing SF correlation 

measures. We also note that the pattern H has a negative correlation with the pattern G3 as indicated by the proposed correlation 

coefficients CG1, and CG2. 

 

Example 2. Let  

, 

,   

, 

be some known patterns and  

, 

be an unknown pattern.  

The calculated values of the SF correlation measures between the known patterns , and the unknown 

pattern H are summarized in Table 5 and also shown in Figure 2. 

 
Table 5. Calculated values of various SF correlation measures regarding Example 2. 

 

 (G1, H)   (G2, H)  (G3, H)  Result 

     

CMIAG1  (Mahmood et al., 2021) 0.7639 0.7639 0.7510 Not Classified 

CMIAG2 (Mahmood et al., 2021) 0.7477 0.7289 0.7477 Not Classified 

CG1 (Proposed) -0.4240 -0.2230 0.5179 G3 

CG2 (Proposed) -0.5492 -0.3512 0.2793 G3 
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Figure 1. Correlation coefficient between the patterns regarding 

Example 1 
 

 
 

Figure 2. Correlation coefficient between the patterns regarding 
Example 2 

 
From Table 5, it is clear that the existing SF 

correlation measures given in Equations (1)-(2) fail to classify 

the pattern H to one of the patterns Gi, i = 1, 2, 3. Our 

proposed SF correlation coefficients given in Equations (3) 

and (4) classify the pattern H into the pattern G3.  

Thus, from Examples 1 and 2, we conclude that the 

suggested SF correlation coefficients are better than the SF 

correlation coefficients due to Mahmood et al. (2021) in 

computing the correlation degree and determining the nature 

of correlation. 

 

7. Conclusions 
 

In this study, we have proposed two correlation 

coefficients for SFSs. It has been observed that the proposed 

correlation coefficients indicate the degree as well as the 

nature of correlation (positive or negative correlation) in two 

SF data sets. Also, we found that from a linguist hedge 

viewpoint the suggested correlation coefficients are robust 

than the existing correlation coefficients for SFSs. We also 

applied our proposed SF correlation coefficients for solving 

some pattern recognition problems. We found that our 

proposed correlation methods perform better than the existing 

SF correlation methods.  

In the future, we will study the application of the 

suggested SF correlation coefficients in decision-making 

problems, clustering analysis, medical diagnosis, etc., and 

extend them to an interval-valued SF environment. 
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