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Abstract 
 

This study firstly adopts a state-of-the-art deep learning approach based on a Long Short-Term Memory (LSTM) neural 

network for predicting the hourly water level of Mekong estuaries in Vietnam. The LSTM models were developed from around 

8,760 hourly data points within 2018 and were evaluated using the Nash-Sutcliffe efficiency coefficient (NSE), mean absolute 

error (MAE), and root mean square error (RMSE). The results showed that the NSE values for the training and testing steps were 

both above 0.98, which can be regarded as very good performance. Furthermore, the RMSE were between 0.09 and 0.11 m for the 

training and between 0.10 and 0.12 m for the testing, while MAE for the training ranged from 0.07 to 0.08 m and varied from 0.08 

to 0.10 m for the testing. The LSTM networks appear to enable high precision and robustness in water level time series prediction. 

The outcomes of this research have crucial implications in river water level predictions, especially from the viewpoint of employing 

deep learning algorithms. 
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1. Introduction  
 

 Water level, the elevation of the free surface of a 

water body relative to a vertical datum, may be used for flow 

forecasting, flood hazard zoning, hydraulic engineering design, 

and computation of water discharge or storage (World 

Meteorological Organization [WMO], 2008). Its fluctuations 

can take place on various spatial and temporal scales due to 

natural cycles as well as anthropogenic forcings (Leira & 

Cantonati, 2008) whereby 57 percent of the variability occurs 

in dammed reservoirs and other bodies of water managed by 

people (Cooley, Ryan, & Smit, 2021). In turn, the variations of 

water level affect a series of chemical, physical, and biological 

processes in basins (Ning et al., 2018). It is thus essential to 

predict water level fluctuations in water bodies. 

Physics-based and data-driven approaches have been 

used to forecast water levels in streams and lakes. Possessing 

the ability to fully describe the nature of physical phenomena, 

physics-based models are widely applied to predict the 

variations of water levels in inland and coastal zones (Liu, 

Wang, & Lei, 2021). Nevertheless, these models are not always 

reasonable because they are complicated, data demanding, and 

time-intensive (Le, Ho, & Lee, 2019). To overcome the above 

limitations, data-driven models are a powerful alternative for 

real-time water level forecasting in rivers or lakes since they 

require less input data and computational time (Phan & 

Nguyen, 2020). Data-driven models can be built using machine 

learning techniques that learn nonlinear relationships in 

hydraulic and hydrological processes (Nguyen & Le, 2019). 

Among the machine learning techniques, Long Short-Term 

Memory (LSTM) is an enhanced Recurrent Neural Network 

(RNN) with a strong ability to capture and store information 

(Zou et al., 2020) and it has been broadly applied to predict 

time-series data, such as water level (Tu et al., 2021) and water 

quality (Zou et al., 2020). 

Vietnam has a rich variety of inland waters, including 

about 3,450 rivers and streams with length of at least ten 

kilometers each (Nguyen, Dang, & Nguyen, 2021), and 9,149 

reservoirs (Directorate of Water Resources [DWR], 2021). Due 

to the sparse hydrological monitoring network with 354 

existing stations (Decision No. 90/QD-TTg on Approval of a 

Master Plan for National Natural Resources and Environment 

Monitoring Networks for 2016 – 2025, with a Vision to 2030, 

2016) and data sharing barriers, forecasting levels and flow of 

surface water in ungauged basins has been a major challenge in 

water resources management. A great deal of work was 

conducted to understand this issue by using different 

approaches, such as hydrologic model (Nguyen, Dang, & 

Nguyen, 2021), hydraulic model (Lam, 2019), Wavelet-

Artificial Neural Network and Time Series (Dat, Thi, Solanki, 

Le An, 2020), Support Vector Regression (Nguyen & Le, 

2019), Ensemble Learning Regression (Kim et al., 2019), 

LSTM (Le, Ho, Lee, & Jung, 2019), and hybrid model (Phan & 

Nguyen, 2020). 

Mekong Delta (MKD) is one of the most important 

bases of agriculture and aquaculture in Vietnam. Fluctuations 

of water levels in this flood plain resulting from climate change 

and anthropogenic interventions (e.g. upstream hydro-

infrastructure developments, instream sand mining, and 

downstream sluices) affect water availability for farming, 

livestock, freshwater and brackish water culture, and biological 

protection purposes. During the high-flow season, flood pulses 

and frequency have cumulatively reduced along the entire 

Mekong due to reservoir operations (Binh et al., 2020). In the 

low-flow season, water levels in the MKD have decreased 

because of increased riverbed incision which outweighs the 

effect of early emergency water release from upstream dams 

(Binh et al., 2020), spring–neap cycles, and wind-generated 

offshore surges (Eslami et al., 2019). This study aims to 

forecast water levels at one-hour lead time in the Mekong river 

estuaries of Vietnam. This was done by applying the LSTM 

model with input data of water level observed at hydrological 

stations during 2018. 

 

2. Materials and Methods 
 

2.1. Study area 
 

The Mekong river basin, the tenth-largest river in the 

world, is located in Southeast Asia with an approximately 

795,000 square kilometer area and 4,900 kilometer length. The 

Mekong entering MKD of Vietnam divides into the Mekong 

(or Tien) and Bassac (or Hau) rivers before draining into the 

East Sea via eight estuaries (Figure 1). The Tien and Hau rivers 

transport approximately 80% and 20% of the total flow of 

MKD, respectively (Binh et al., 2020). 

Thanks to its location, MKD has a vast plain area, a 

highly braided network of rivers, two sides bordering the sea, 

and over 732 kilometers long coastline (Anh et al., 2021) which 

is favorable for agricultural diversification based on the three 

key sectors of rice cultivation, aquaculture, and fruit 

production. MKD is the largest agricultural production center 

in Vietnam, contributing 50% of rice, 65% of seafood, and 70% 

of fruit (Resolution on Sustainable and Climate-Resilient 

Development of the Mekong Delta, 2017). 

MKD receives a large amount of fresh water, 

approximately 450-475 billion cubic meters per year, 

accounting for more than half of the total surface water of 

Vietnam. However, heavy rains and high flows usually 

concentrate in the wet season from May to October, causing 

annual flooding in this region with nearly 50% of the area being 

inundated for 2-4 months. In contrast, during the dry season that 

lasts from November to April rainfall is negligible, and the 

amount of water flowing from the Mekong River into the delta 

is low, so saltwater penetrates inland and groundwater 

resources have been significantly reduced. The above 

significant changes in streamflow between the wet and dry 

seasons have been challenges to securing the water supply for 

household and production uses by the coastal residents (Anh et 

al., 2021). 

 

2.2. Data acquisition and preprocessing 
 

Due to data availability, this study focused on the Cua 

Tieu, Cua Dai, Ham Luong, and Co Chien estuaries. We 

collected water level data at 4 hydrological stations (Figure 1): 

Vam Kenh, Binh Dai, An Thuan, and Ben Trai near the 

estuaries. At each station, water level measurement was made 

hourly from January to December in 2018 for a total of 8,760 

data points. Southern Regional Hydro-Meteorological Centre, 

an institute of Vietnam’s Ministry of Natural Resources and 

Environment, provided the data. 

Regarding time series data, the data quality has a 

great  effect on  the  accuracy of  the  predictive  models.  As  a
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Figure 1. Locations of the study area and hydrological stations 

 

result, depending on characteristics of the water level dataset, 

two-step preprocessing is performed before training. 

1) Abnormal outliers in the dataset can be detected 

and replaced by the average values of the four points around 

them. The box plot is a convenient way of illustrating the 

distribution of data based on the five number indices: 

minimum, first quartile (Q1), median, third quartile (Q3), and 

maximum.  In order to detect outliers, the box plot procedure is 

used with the upper limit of Q3 + 1.5 * Interquartile Range 

(IQR) and the lower limit of Q1 - 1.5 * IQR.  Values that are 

more extreme than these limits can be classified as outliers or 

suspected outliers. 

2) All water level data were scaled to within the 

interval (0, 1) by normalization performed using the scikit-learn 

preprocessing library in Python language. This step prevents 

dramatic changes in gradient and smooths the convergence 

(Barzegar, Aalami, & Adamowski, 2020). Moreover, it can 

increase the speed of neural network training and allow 

reducing the sample size without considerably influential 

prediction accuracy (Yang, Wu, & Hsieh, 2020). 

 

2.3. LSTM neural networks 
 

A recurrent neural network (RNN) is an improved 

multi-layer perception, which includes the input layer, hidden 

layer, and output layer (Figure 2a). In general, the basic 

principle of RNN is as follows: the status at time t (ht) is 

determined by the previous state (ht-1) and the current input (xt). 

Since the output (yt) is determined by the state (ht), it reflects 

the sequential dependency of the data. W, U, and V are 

hyperparameters of different layers. They are able to predict the 

future unseen sequential data with respect to the earlier steps 

observed in the sequence. However, the major challenge with 

traditional RNNs is that these networks remember only a few 

time steps due to vanishing and exploding gradient problems 

during the back-propagation calculations; in other words, the 

RNNs are not suitable to go back over longer sequences of data 

(Hochreiter, 1998). 

This challenging problem can be solved using the 

structure of LSTM. The critical component of the LSTM is 

composed of many linked memory cells and the architecture of 

each cell is shown in Figure 2b. Each repeating module of 

LSTM contains a memory cell state regulated by the three gates 

(forget, input, and output gates). The specific process of LSTM 

can be summarized as follows. 

1. The forget gate (ft) determines whether to accept 

the previous state (ht-1) and a new input value (xt) in the cell and 

maintain or remove the information (Equations 1, 2): 

 

ft = σ(Wt[ht-1, xt])    (1) 

 

σ (x) =
1

1 + 𝑒−𝑥 
    (2) 

 

where σ is the sigmoid function and Wt is the weight 

of the forget gate. 

2. The input gate (it) determines whether or not to 

save certain information in the cell (Equation 3). The input gate 

has two active function layers: a sigmoid and a tanh. The value 

to be updated using the sigmoid function and the vector value 

of the candidate cell (�̃�t) that can be added to the long-term 

memory in the tanh layer are generated. Then, these two values 

are multiplied to update the data state (Equations 4, 5): 

 

it = σ(Wi[ht-1, xt])   (3) 

 

�̃�t = tanh(Wc. [ht-1, Xt])   (4) 

 

tanh (x) =
𝑒𝑥− 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 
   (5) 

 

where Wi is the weight of the input gate and Wc is the 

weight of the candidate cell. 

3. Update the cell state of the present time step Ct, 

which combines the candidate memory �̃�t and the long-term 

memory Ct-1 (Equation 6): 
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Figure 2. The internal structures of RNN (A) and LSTM (B) 

 

Ct = ft.Ct-1 + it.�̃�t (6) 

 

4. The output gate (Ot) determines which part of the 

cell state to output using the sigmoid function as in Equation 

(7). Finally, it updates the state of a specific time (ht) by 

multiplication with the tanh of the active cell state (Ct) 

(Equation 8): 

 

Ot = σ(Wo.[ht-1, Xt])   (7) 

 

ht = Ot.tanh(Ct)    (8) 

 

where Wo is the weight of the output gate. 

 

2.4. Model architecture 
 

In this study, the input data were divided into two 

parts for training and testing the LSTM model. The training 

dataset accounted for 70% of the data, and the remaining 

observed samples (30%) were used to assess the forecasting 

model. The complete network model structure is displayed in 

Figure 3. 

The LSTM structures consist of an LSTM layer with 

a tangent function with four neurons, which was used in the 

hidden layer. A fully connected layer, termed “dense”, with one 

neuron and a tangent activation function, was used. 

Subsequently, the models were compiled with a mean squared 

error loss function and an Adam optimizer with a learning rate 

of 0.001. Figure 4 presents the loss function plots for the 

models. The presented models were adapted in the open-source 

scikit-learn and Keras libraries in Python 3.6.  

 
 
Figure 3. Flowchart of the LSTM networks 

 

2.5. Performance criteria 
 

Nash-Sutcliffe efficiency coefficient (NSE, Equation 

9), Root Mean Squared Error (RMSE, Equation 10), and Mean 

Absolute Error (MAE, Equation 11) were used to evaluate 

model performance. 

 

NSE=1- 
∑ (�̂�𝑖− 𝑦𝑖)2𝑛

𝑖=1

∑ (�̅�− 𝑦𝑖)2𝑛
𝑖=1

   (9) 

 

RMSE = √
1

𝑛
 ∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1    (10) 

 

MAE = 
1

𝑛
 ∑ |�̂�𝑖 − 𝑦𝑖|𝑛

𝑖=1    (11) 

where n represents the number of samples and �̂�𝑖, 𝑦𝑖, 

and �̅� denote the predicted value, the observed value, and the 

mean of observations, respectively. 
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Figure 4. Loss function curve of LSTM model with different hydrological stations 

 

The performance of the model based on NSE is 

categorized as very good, good, satisfactory or unsatisfactory 

when NSE > 0.80, 0.7 < NSE ≤ 0.8, 0.50 < NSE ≤ 0.70, or NSE 

≤ 0.50, respectively (Moriasi, Gitau, Pai, & Daggupati, 2015). 

 

3. Results and Discussion 
 

3.1. Water level prediction 
 

Table 1 shows the values of the validation error of 

forecasting water level for up to 5 hours ahead. The R2 

demonstrated that the ordering of the sizes of the lead times was 

as follows, from largest to smallest: 1, 2, 3, 4, and 5. In terms 

of RMSE and MAE, the ordering of the values for the lead 

times was as follows, from smallest to largest: 1, 2, 3, 4, and 5. 

With regard to accuracy, the LSTM model provided good 

accuracy for a short time horizon forecast. However, when the 

forecasting horizons were longer (e.g. t + 4, t + 5), the 

performance of LSTM model was insignificant. 

Figure 5 illustrates a comparison between the 

observed and predicted water levels over the four estuaries for 

lead time of 1 h. Overall, the predicted water levels by the 

LSTM neural networks presented a good agreement with the 

observed water levels. The simulated and observed values were 

both reverted to their original scale, the NSE, RMSE and MAE 

were then calculated to evaluate the model. The LSTM 

performances did not vary much across the four estuaries. The 

results showed NSE values ranging from 0.98 to 0.99 for the 

training step and 0.98 for the testing step in all stations, which 

is within the “very good” performance range from 0.80 to 1.00. 

In addition, the RMSE were between 0.09 and 0.11 (m) for the 

training and between 0.10 and 0.12 (m) for the testing, while 

MAE for the training ranged from 0.07 to 0.08 (m), and from 

0.08 to 0.10 (m) for the testing (Table 2). These indicate very 

high precision and robustness of the LSTM networks in water 

level time series prediction. 

The scatter plots of the observed and simulated water 

levels in the training and testing steps  (Figures  6 and  7)  show

Table 1. Validation error of forecast water level for up to 5 hours ahead 

 

Criteria Lead time Vam Kenh Binh Dai An Thuan Ben Trai 

      

R2 t + 1 0.986 0.988 0.984 0.989 
t + 2 0.933 0.936 0.943 0.944 

t + 3 0.824 0.808 0.867 0.844 

t + 4 0.643 0.575 0.734 0.689 
t + 5 0.422 0.258 0.556 0.496 

RMSE (m) t + 1 0.097 0.089 0.103 0.083 

t + 2 0.208 0.207 0.193 0.188 
t + 3 0.340 0.358 0.295 0.313 

t + 4 0.484 0.533 0.418 0.443 

t + 5 0.616 0.704 0.539 0.563 
MAE (m) t + 1 0.074 0.072 0.080 0.066 

t + 2 0.161 0.165 0.151 0.151 

t + 3 0.262 0.287 0.237 0.253 
t + 4 0.375 0.432 0.337 0.356 

t + 5 0.477 0.572 0.437 0.450 
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Table 2. The results of LSTM neural networks for the training and testing datasets at hydrological stations for lead time of 1 h 

 

Stations 

Training period Testing period 

NSE RMSE (m) MAE (m) NSE RMSE (m) MAE (m) 

       

Vam Kenh 0.98 0.11 0.08 0.98 0.12 0.09 
Binh Dai 0.98 0.11 0.08 0.98 0.11 0.09 

An Thuan 0.98 0.11 0.08 0.98 0.12 0.10 

Ben Trai 0.99 0.09 0.07 0.98 0.10 0.08 
       

 

 
 

Figure 5. Observed and predicted water level in 2018 at hydrological 
stations for lead time of 1 h 

 

that the LSTM neural networks gave highly accurate 

prediction. They had high r values (0.99 in all cases) and were 

well fit by linear regression. 

Water level prediction plays an important role in 

Mekong Delta as water level relates to flooding and riverbank 

erosion in the wet season; and drought and saline intrusion in 

the dry season. Most people in this area are working in 

agriculture and aquaculture, and accurate predictions of water 

level would assist them in appropriate planning to protect their 

crops. Currently, the responsible institute for water level 

prediction in the area still prefers to use physically-based 

models such as MIKE21 for predicting water level. This study 

proposed a new approach using deep learning with less input 

data and higher accuracy, and can offer an alternative to that 

traditional approach. In the future, this approach can be 

developed for longer lead times such as one week, and that 

would be more useful for inhabitant activities regarding 

agriculture and aquaculture planning. 

 

3.2. Comparison with state-of-the-art methods 
 

Due to influences of different surrounding flows, the 

tidal schemes in the Mekong estuaries can be considered 

complex (Dang et al., 2019). Therefore, many approaches have 

been tested for the water level simulations in Mekong River’s 

mouths, such as machine learning algorithms, remote sensing 

techniques (He, Fok, Chen, & Chun, 2018), and process-based 

models (i.e., MIKE) (Nhan, 2016). Here, the study compares 

the accuracy of these different methods applied to water level 

prediction in the Mekong estuaries. However, the comparison 

becomes difficult, mainly because of differences in principles-

based approaches and used datasets. In general, these models 

developed for water level prediction have had good 

performances, especially both the deep learning algorithms and 

the process-based models. Table 3 lists the prediction 

accuracies of these different state-of-the-art techniques for 

water level prediction in Mekong estuaries. 

Although generally accurate results have been 

obtained from the process-based models, which showed a very 

high precision in water level time series prediction, the deep 

learning approach (i.e., LSTM) has still received more attention 

because of the following three aspects. First, physically-based 

hydrodynamic models are highly complex in general, needing 

lots of parameter data as model inputs, while the development 

of machine learning algorithms requires minor data as inputs 

(Zhu, Hrnjica, Ptak, Choiński, & Sivakumar, 2020). Second, 

the water level is a typical time series data (Ren, Liu, Niu, Lei, 

& Zhang, 2020). LSTM is able to keep the information gained 

from earlier parts of a long data sample in the memory cells and 

move it to the later parts of the same data sample. Moreover, 

the forget gate in LSTM can effectively filter out meaningless 

information from the input data, improving the model accuracy 

(Goodfellow, Bengio, & Courville, 2016). This makes LSTM 

suitable for modelling sequential or time series data (Yang et 

al., 2020). Third, because the water level is certainly affected 

by the adjacent terrain characteristics, while LSTM algorithms 

not only considers the hidden information in water level time 

series they also captures local spatial factors from a specific 

sequence (Fang, Wang, Peng, & Hong, 2021).
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Figure 6. Comparisons between observed and predicted water levels for the training dataset at hydrological stations for lead time of 1 h 
 

 
 

Figure 7. Comparisons between observed and predicted water levels for the testing dataset at hydrological stations for lead time of 1 h 

 

Table 3. The performance of various methods in predicting water levels at Mekong river estuaries 
 

Mekong river 
estuaries 

Performance Techniques Datasets References 

     

Vam Kenh NSE: 0.98, RMSE: 0.11-0.12 m, MAE: 0.08-0.09 m LSTM Hourly, 2018 Our study 

NSE: 0.70-0.78, RMSE: 0.41-0.47 m Remote 
sensing 

Daily, 1992 - 2006 He, Fok, Chen, and 
Chun (2018) 

NSE: 0.76-0.95, RMSE: 0.19-0.38 m Drought 

indices 

Daily, 1992 - 2007 He, Fok, Chen, and 

Chun (2018) 
RMSE: 0.042 m, R2: 0.97 MIKE Hourly, 1984-2016 Nhan (2016) 

Binh Dai NSE: 0.98, RMSE: 0.11 m, MAE: 0.08-0.09 m LSTM Hourly, 2018 Our study 

RMSE: 0.043 m, R2: 0.97 MIKE Hourly, 1984-2016 Nhan  (2016) 
An Thuan NSE: 0.98, RMSE: 0.11-0.11 m, MAE: 0.08-0.10 m LSTM Hourly, 2018 Our study 

RMSE: 0.041 m, R2: 0.98 MIKE Hourly, 1984-2016 Nhan  (2016) 

Ben Trai NSE: 0.98-0.99, RMSE: 0.09-0.10 m, MAE: 0.07-0.08 m LSTM Hourly, 2018 Our study 
RMSE: 0.042 m, R2: 0.98 MIKE Hourly, 1984-2016 Nhan (2016) 
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In fact, several researchers have tried to apply LSTM 

to time series forecasting and compared their results to other 

process-based models. Kratzert et al. (2018) proposed an 

LSTM model for daily runoff prediction using meteorological 

observations. The results showed that the LSTM performed 

better than the Sacramento Soil Moisture Accounting Model 

SAC-SMA + Snow-17. Damavandi et al., (2019) applied an 

LSTM model to watershed predicting, which included the 

current day’s streamflow and climate data, and obtained results 

better than the physical model, which was calibrated SAC-

SMA and CaMa Flood. 

 

4. Conclusions 
 

This paper presents the first application of the LSTM 

neural networks for modelling and predicting hourly water 

levels in Mekong estuaries in Vietnam. The key research 

conclusions can be summarized: (i) The LSTM models 

achieved outstanding performance in river water level 

prediction of Mekong estuaries, indicating the successful 

application of the LSTM algorithms for times series 

forecasting. (ii) For river water level prediction, using the deep 

learning models may be sufficient when such models are 

provided with good data and they are well trained. This research 

suggests that deep learning approaches (i.e., LSTM) have 

promise as potential tools in accurately forecasting the water 

level and thus these techniques can contribute to building 

effective strategies for better water management and 

sustainability on the Mekong River and other river basins in 

Vietnam. 
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