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Abstract 
 

We mainly give necessary and sufficient conditions for being a Heron triangle in the case of certain classes of an isosceles 

triangles with the three sides (𝑎, 𝑎, 𝑐), where 𝑐 is an arbitrary positive integer, and 𝑎 is a Fermat or Fibonacci prime. 
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1. Introduction  
 

 A Heron triangle is a special triangle having positive 

integers as its three sides 𝑎, 𝑏, 𝑐 and also its area. Throughout 

this paper, we will sometimes use (𝑎, 𝑏, 𝑐) as a Heron triple if 

a triangle with its three sides 𝑎, 𝑏, 𝑐 is the Heron triangle. The 

plethora of studies regarding several properties of such a 

triangle has accumulated over a long time. In 1990, Harborth 

and Kemnitz (Harborth & Kemnitz, 1990) studied a connection 

between the Fibonacci numbers and the Heron triangles. They 

provided the definition of a Fibonacci triangle, which is a Heron 

triangle whose three sides are all Fibonacci numbers, and 

furthermore, they intended to investigate Fibonacci triangles 

other than the triangle of sides 5,5,8.  In 2003, Luca (Luca, 

2003) studied a connection between a Fermat prime and a 

Heron triangle, and he proved that if three sides 𝑎, 𝑏, 𝑐  of a 

Heron triangle are prime powers, then either (𝑎, 𝑏, 𝑐)  =
(5, 4, 3) or (ℱm, ℱm, 4(ℱm−1 –  1)) for some integer m ≥ 1, 

where ℱm is a Fermat prime. In 2013, Stanica, Sarkar, Gupta, 

Maitra and Kar (Stanica, Sarkar, Gupta, Maitra & Kar, 2013) 

defined the notation H(𝑎, 𝑏) for the number of all Heron 

triangles for fixed natural numbers 𝑎, 𝑏.  They found an upper 

bound for H(𝑝, 𝑞) when 𝑝 and 𝑞 are primes, and in this paper 

we will mention only the particular case H(𝑝, 𝑝) = 2, where 𝑝 

is a prime such that 𝑝 ≡ 1(mod 4).  
 

 
In this paper, we attempt to study the connections 

among Fermat numbers, Fibonacci numbers, and Heron 

triangles. Inspired by the work of Luca (Luca, 2003) mentioned 

above, necessary and sufficient conditions for being a Heron 

triangle in the case of certain classes of isosceles triangles, with 

the three sides 𝑎, 𝑎, 𝑐, where 𝑐 is an arbitrary positive integer 

and 𝑎 is a Fermat prime or Fibonacci prime, are eventually 

provided. 

       To complete our results, first of all, we shall present 

the axiom called the triangle inequality, which states that for 

any triangle, the sum of the lengths of any two sides must be 

greater than the length of the remaining side. This axiom will 

be used many times in order to assess whether some given three 

positive integers can be the sides of a triangle or not.  

     Then, the so-called Heron’s formula (Luca, 2003) will 

be introduced in order to find the area of any triangle, as shown 

below. 

 

Theorem 1.1 (Heron’s formula) The area of any triangle is 

given by  

 

𝐴 = √𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)  with  𝑠 =
𝑎 + 𝑏 + 𝑐

2
, 

 
which is its semi-perimeter when 𝑎, 𝑏 and 𝑐 are the lengths of 

sides of the triangle.  

In particular, if 𝑎 = 𝑏, the triangle is isosceles and its 

area can be easily computed as  



1288 C. Tangkanchanawong, & S. Jaidee / Songklanakarin J. Sci. Technol. 44 (5), 1287-1291, 2022 

 

𝐴 =
𝑏

4
√4𝑎2 − 𝑏2 . 

 

Lastly, the main approach seen in Corollary 1.1 will be crucially needed in our work. Before proving it, let us present 

some properties of a Heron triangle taken from (Luca, 2003), the classical parameterization of primitive Pythagorean triples found 

in (Joyce, 1997) and the last two theorems taken from (Bhaskar, 2008; Burton, 2007; Stanica, Sarkar, Gupta, Maitra & Kar, 2013) 

as follows: 

 

Lemma 1.1   Let  𝑎, 𝑏 and  𝑐 be the lengths of the sides of a Heron triangle such that 𝑎 = 𝑏. Then 
𝑐

2
  is even and ℎ𝑐 is a positive 

integer when ℎ𝑐 is altitude from side 𝑐. 
  Recall that for integers 𝑎, 𝑏 and 𝑐,  we call (𝑎, 𝑏, 𝑐)  a Pythagorean triple if 𝑎2 + 𝑏2 = 𝑐2, and it is said to be a primitive 

Pythagorean triple if it is a Pythagorean triple and gcd (𝑎, 𝑏, 𝑐)  = 1. In other words, (𝑎, 𝑏, 𝑐) is a Pythagorean triple if such integers 

can  form a right triangle where 𝑐 is  the length of the hypotenuse, and 𝑎, 𝑏 are the lengths of the remaining two sides. 

 

Theorem 1.2. (The classical parameterization of primitive Pythagorean triples) If (𝑎, 𝑏, 𝑐)  is a primitive Pythagorean triple, then 

there exist positive integers 𝑢 and 𝑣 such that 𝑢 > 𝑣,  gcd(𝑢, 𝑣) = 1 and 𝑢 ≢ 𝑣 (mod 2) for which 

 

𝑎 = 𝑢2 − 𝑣2,  𝑏 = 2𝑢𝑣  and  𝑐 = 𝑢2 + 𝑣2. 
 

Theorem 1.3. Let 𝑝 be a prime. Then 𝑝 ≡ 1(mod 4) if and only if 𝑝 can be written uniquely as a sum of two squares. 

 

Theorem 1.4. Let  H(a, b) be the number of a Heron triangle whose two sides 𝑎, 𝑏 are   fixed. If 𝑝, 𝑞 are two fixed odd prime sides 

of a triangle, then 

 

𝐻(𝑝, 𝑞)  is  

{
 

 
   =  0  ;  𝑝, 𝑞  are ≡ 3 (mod 4)                                                               

   =  2  ;  𝑝 = 𝑞 ≡ 1 (mod 4)                                                                    

≤  2  ;  𝑝 ≠  𝑞   and exactly one of 𝑝 and 𝑞 is ≡ 3 (mod 4)    

   ≤  5  ;  𝑝 ≠  𝑞 and 𝑝, 𝑞 are ≡ 1 (mod 4).                                        

 

 

The idea how to obtain the above theorem may be seen in (Ionascu, Luca & Stanica, 2007; Stanica, Sarkar, Gupta, Maitra 

& Kar, 2013). The particular proof of Theorem 2.4 appearing in (Ionascu, Luca & Stanica, 2007) leads us to provide exactly two 

isosceles triangles with the three sides 𝑝, 𝑝, 𝑐, where 𝑝 ≡ 1(mod 4)  and 𝑐 is a positive integer as illustrated in the following 

corollary.  

 

Corollary 1.1. Let 𝑝 be an odd prime such that 𝑝 ≡ 1(mod 4) and 𝑐 be a positive integer. If (𝑝, 𝑝, c) is a Heron triple, then there 

exists a unique pair of positive integers 𝑢 and 𝑣 for which 

 

𝑝 = 𝑢2 + 𝑣2, and  𝑐 = 4𝑢𝑣  or  𝑐 = 2(𝑢2 − 𝑣2), 
 

where  𝑢 > 𝑣,  gcd(𝑢, 𝑣) = 1 and  𝑢 ≢ 𝑣 (mod 2). 
 

Proof.  Assume that (𝑝, 𝑝, 𝑐) is a Heron triple. Note that the corresponding triangle is isosceles and 𝑐 is even by Lemma 1.1. It is 

not hard to see that (
𝑐

2
, ℎ𝑐 , 𝑝) is a Pythagorean triple.  It follows by Theorem 1.2 that 𝑝 = 𝑢2 + 𝑣2  for some positive integers 𝑢 and 

𝑣 for which 

 

𝑢 > 𝑣, gcd(𝑢, 𝑣) = 1, 𝑢 ≢ 𝑣 (mod 2), and  {𝑐/2, ℎ𝑐} = {2𝑢𝑣, |𝑢
2 − 𝑣2 |}. 

 

These can happen by applying Theorem 1.3 and 𝑝 ≡ 1(mod  4). Hence, we can eventually conclude that 𝑐 =
4𝑢𝑣  or  𝑐 = 2(𝑢2 − 𝑣2). 

 

2. Fermat Numbers and Heron Triangles 
 

Definition 2.1. Let 𝑚 be a nonnegative integer. A number of the form ℱm = 22
m

 + 1 is called a Fermat number. We say that ℱm is 

a Fermat prime if ℱm is a prime number. 

The first six Fermat numbers are   

 

ℱ0 = 3,  ℱ1 = 5,  ℱ2 = 17,  ℱ3 = 257,  ℱ4 = 65537,  ℱ5 = 4294967297. 

 

Observe that they are prime numbers except for  ℱ5 , which is also not a prime power since  ℱ5 = (641)(6700417).  
Further notice that 4( ℱm−1 − 1)  can be written as an integer power of  2  for any positive integer 𝑚. The following lemma 
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indicates that the converse of Luca’s result as mentioned above fails. More precisely, there exists a Heron triple  (𝑎, 𝑏, 𝑐) for which 

at least one of the sides 𝑎, 𝑏  and 𝑐 is not a prime power, for instance (𝑎, 𝑏, 𝑐) =  (ℱ
5
, ℱ5, 4(ℱ5 –  1)). 

 

Lemma 2.1. The integral triple (ℱm, ℱm, 4(ℱm−1 –  1)) is a Heron triple for any natural number  𝑚. 

 

Proof. Let  𝑚 be a natural number. We first show that the integers ℱm, ℱm and  4(ℱm−1 −  1) can be the sides of a triangle. It 

suffices to prove that the length of the longest side is less than the sum of the lengths of the remaining sides. Since ℱm ≠ 4(ℱm−1 

−  1), we distinguish our consideration into two cases: If ℱm > 4(ℱm−1 −  1), then we are done. If  ℱm < 4(ℱm−1 −  1), then we 

eventually obtain that 
 

2ℱm −  4(ℱm−1 −  1)  =  2 (22m−1

 −  1)
2

 > 0, 

 

which means that ℱm + ℱm  >  4(ℱm−1 −  1). Secondly, let us consider 

 

Am =  2(ℱm−1 −  1)√ℱm
2  −  4(ℱm−1 −  1)

2
   =  2ℱm−1(ℱm−1 −  1)(ℱm−1 −  2), 

 

which is always positive, and this is indeed the area of our considered triangle. Hence, the proof is complete. 

 

Lemma 2.2. The integral triple (ℱm, ℱm, 2(ℱm −  2)) is a Heron triple for any natural number 𝑚. 

 

Proof. Let  𝑚 be a natural number. We first show that the integers ℱm, ℱm and  2(ℱm −  2) can be constructed as the sides of a 

triangle. It suffices to prove that the length of the longest side is less than the sum of the lengths of the remaining sides. Since 

 

2(ℱm −  2)- ℱm =  ℱm − 4 = 22
𝑚

 − 3 > 0, 

 

it follows that 2(ℱm −  2) is the longest side. It is easy to see that 2(ℱm −  2) < 2ℱm   as (ℱm −  2) < ℱm. Secondly, let us consider 

   

𝐴𝑚
′ = (ℱm −  2)√ℱm

2  −  (ℱm −  2)
2
   =  2(ℱm − 2)(ℱm−1 − 1), 

 

which is always positive, and this is indeed the area of our considered triangle. Hence, the proof is complete. 

 

Corollary 2.1. For a given natural number  𝑚,  let 𝐴𝑚 and 𝐴𝑚
′  be the areas of the triangles having (ℱm, ℱm, 4(ℱm−1 −  1)) and 

(ℱm, ℱm, 2(ℱm −  2)) as their three sides, respectively. Then  𝐴𝑚 = 𝐴𝑚
′ . 

 

Proof. By the proofs of Lemma 2.1 and 2.2, for each natural number 𝑚, we respectively have 

 

𝐴𝑚 =  2ℱm−1(ℱm−1 − 1)(ℱm−1 − 2)   and  𝐴𝑚
′  = 2(ℱm − 2)(ℱm−1 − 1). 

 

Consequently, 

 

Am =  2ℱm−1(ℱm−1 −  1)(ℱm−1 −  2) 

 =  2(22
m−1

 +  1) 22
m−1

 (22
m−1

−  1) 

 =  2(22
m

 − 1) 22
m−1

 

 =  2(ℱm −  2)(ℱm−1 −  1) 

 =  𝐴𝑚
′ , 

as desired. 

 

Theorem 2.1. Let ℱm  be a Fermat prime with 𝑚 ≥ 1 and 𝑐 be a positive integer.  Then (ℱm, ℱm, 𝑐) is a Heron triple iff 𝑐 =
4(ℱm−1 − 1)  or 𝑐 = 2(ℱm − 2). 
 

Proof. Assume that (ℱm, ℱm, 𝑐) is a Heron triple. Note that ℱm  is prime and ℱm≡1(mod 4) for any positive integer 𝑚. It follows 

by Corollary 1.1 that there exists a unique pair of positive integers 𝑢 and 𝑣 for which 

 

ℱm = 𝑢
2 + 𝑣2  and  𝑐 = 4𝑢𝑣  or  𝑐 = 2(𝑢2 − 𝑣2), 

 

where 𝑢 > 𝑣,  gcd(𝑢, 𝑣) = 1,  and 𝑢 ≢ 𝑣 (mod 2). But we have ℱm  =  2
2𝑚 + 1, and this implies that 𝑐 = 4(ℱm−1 − 1) or 𝑐 =

2(ℱm − 2). The proof of sufficiency is by using Lemma 2.1 and Lemma 2.2. 
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3. Fibonacci Numbers and Heron Triangles 
 

Definition 3.1. The integers appearing in the sequence 𝐹n defined by 𝐹0 = 0, 𝐹1 = 1 and   𝐹n = 𝐹n−1 + 𝐹n−2 for integer 𝑛 ≥ 2 are 

said to be Fibonacci numbers. If 𝐹n is a prime number, then 𝐹n is called a Fibonacci prime. 

The following lemma appearing in (Wikipedia contributors, 2022) will play an important role in this section. 

 

Lemma 3.1. 𝐹2n−1 = 𝐹n
2 + 𝐹n−1

2  for any natural number 𝑛. 
 

Lemma 3.2.  (𝐹2n−1, 𝐹2n−1, 4𝐹n𝐹n−1) is a Heron triple for any natural number 𝑛 ≥ 3. 

 

Proof. Let 𝑛 be a natural number greater than 3. Notice that 2𝐹n−1 > 𝐹n  and 𝐹n−1 < 𝐹n. Using Lemma 3.1, we obtain that 

 

4𝐹n𝐹n−1 −  F2n−1  =  4𝐹n𝐹n−1 −  (𝐹n
2 + 𝐹n−1

2 )  

=  (2𝐹n𝐹n−1 −  𝐹n𝐹n)  + (2𝐹n𝐹n−1 −  𝐹n−1 𝐹n−1 ) > 0, 

 

which implies that 4𝐹n𝐹n−1  is the longest side. Let us consider 

 

2𝐹2n−1 −  4𝐹n𝐹n−1  =  2(𝐹n
2 +  𝐹n−1

2  −  2𝐹n𝐹n−1) 

=  2(𝐹n −  𝐹n−1)
2
  > 0, 

 

which means that 𝐹2n−1 +  𝐹2n−1 >  4𝐹n𝐹n−1 . Thus, we first conclude that the Fibonacci numbers 𝐹2n−1,  𝐹2n−1 and  4𝐹n𝐹n−1  can 

be the sides of a triangle. Secondly, let us consider 
 

𝐵𝑛   =  2𝐹n𝐹n−1√𝐹n−1
2  −  (2𝐹n𝐹n−1)

2
 

   =  2𝐹n𝐹n−1√(𝐹2n−1 −  2𝐹n𝐹n−1)(𝐹2n−1 +  2𝐹n𝐹n−1) 

   =  2𝐹n𝐹n−1√(𝐹n
2  + 𝐹n−1 

2 −  2𝐹n𝐹n−1)(𝐹n
2 + 𝐹n−1

2 + 2𝐹n𝐹n−1) 

   =  2𝐹n𝐹n−1√(𝐹n  − 𝐹n−1)
2(𝐹n  +  𝐹n−1)

2 

   =  2𝐹n𝐹n−1(𝐹n
2  −  𝐹n−1

2 ), 
 

which is always positive, and this is indeed the area of our considered triangle. Hence, the proof is complete.  

 

Lemma 3.3. (𝐹2n−1, 𝐹2n−1, 2(𝐹𝑛
2 − 𝐹𝑛−1

2  )) is a Heron triple for any natural number 𝑛 ≥ 3. 

 

Proof. Let 𝑛 be a natural number greater than 3. It suffices to show that the length of the longest side is less than the sum of the 

lengths of the remaining sides. Since 𝐹2n−1 ≠ 2(𝐹𝑛
2 − 𝐹𝑛−1

2 ), we will separate our consideration into two cases: If 𝐹2n−1 >
2(𝐹𝑛

2 − 𝐹𝑛−1
2 ), then we are done. If 𝐹2n−1 < 2(𝐹𝑛

2 − 𝐹𝑛−1
2 )), then we obtain that 

 

2𝐹2n−1 −  2(𝐹n
2 − 𝐹n−1

2 )  =  2(𝐹n
2 + 𝐹n−1

2 ) −  2(𝐹n
2 −  𝐹n−1

2 ) =  4𝐹n−1
2  > 0, 

 

which leads us to finish this case. Thus, we first conclude that the Fibonacci numbers 𝐹2n−1 , 𝐹2n−1 and 2(𝐹𝑛
2 − 𝐹𝑛−1

2 ) can be the 

sides of a triangle. Secondly, let us consider 
 

𝐵𝑛
′   =  (𝐹n

2 − 𝐹n−1
2 )√𝐹2n−1

2  −  (𝐹n
2 − 𝐹n−1

2 )
2
 

 =  (𝐹n
2 − 𝐹n−1

2 )√(𝐹2n−1   −  (𝐹n
2 − 𝐹n−1

2 )) (𝐹2n−1  + (𝐹n
2 − 𝐹n−1

2 )) 

 =  (𝐹n
2 − 𝐹n−1

2 )√(𝐹n
2  +  𝐹n−1

2   −  (𝐹n
2 − 𝐹n−1

2 )) (𝐹n
2  +  𝐹n−1

2  + (𝐹n
2 − 𝐹n−1

2 )) 

 = (𝐹n
2 − 𝐹n−1

2 )√4𝐹n
2𝐹n−1

2  

 =  2𝐹n𝐹n−1(𝐹n
2 − 𝐹n−1

2 ), 
 

which is always positive, and this is indeed the area of our considered triangle. Hence, the proof is complete.  

The following corollary is immediately true by taking the results from Lemma 3.2 and Lemma 3.3. 

 

Corollary 3.1. For a given natural number 𝑛 ≥ 3, let 𝐵𝑛 and 𝐵𝑛
′  be the areas of the triangles having (𝐹2n−1,  𝐹2n−1, 4𝐹n𝐹n−1) and 

(𝐹2n−1,  𝐹2n−1, 2(𝐹𝑛
2 − 𝐹𝑛−1

2  )) as their three sides, respectively. Then  𝐵𝑛 = 𝐵𝑛
′ . 
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Theorem 3.1. Let 𝐹2𝑛−1  be a Fibonacci prime number with integer 𝑛 ≥ 3 and 𝑐 be a positive integer.  Then  (𝐹2𝑛 −1,  𝐹2𝑛 −1, 𝑐) 
is a Heron triple iff 𝑐 = 4𝐹𝑛𝐹𝑛−1 or 𝑐 = 2(𝐹𝑛

2 − 𝐹𝑛−1
2  ). 

 

Proof. Assume that (𝐹2𝑛 −1,  𝐹2𝑛 −1,  𝑐) is a Heron triple, where 𝐹2𝑛−1  is a Fibonacci prime with 𝑛 ≥ 3 and 𝑐 is a positive integer. 

Note that 𝐹2𝑛−1 is always an odd prime. By Lemma 3.3, we obtain that 𝐹2𝑛 +1 = 𝐹𝑛
2 + 𝐹𝑛−1

2 ≡ 1(mod 4). It follows by referring 

to Corollary 1.1 that there exists a unique pair of positive integers 𝑢 and 𝑣 for which    

 

𝐹2𝑛−1 = 𝑢
2 + 𝑣2  and  𝑐 = 4𝑢𝑣  or  𝑐 = 2(𝑢2 − 𝑣2), 

 

where 𝑢 > 𝑣 ,  gcd(𝑢, 𝑣) = 1, and 𝑢 ≢ 𝑣 (mod 2). Again, we observe by Lemma 3.3 that 𝐹2𝑛−1 = 𝐹𝑛
2  + 𝐹𝑛−1

2  satisfying𝐹𝑛 >
𝐹𝑛−1,  gcd(𝐹𝑛 ,  𝐹𝑛−1) = 1, and 𝐹𝑛  ≢ 𝐹𝑛−1(mod 2). Then we eventually conclude that 𝑐 = 4𝐹𝑛𝐹𝑛−1 or 𝑐 = 2(𝐹𝑛

2 − 𝐹𝑛−1
2  ). The 

sufficiency is proven by referring to Lemma 3.2 and Lemma 3.3. 

 

4. Conclusions 
 

For a given Fermat prime ℱm  with 𝑚 ≥ 1, and a given positive integer 𝑐, we can show that  (ℱm, ℱm, 𝑐) is a Heron triple 

if and only if 𝑐 = 4(ℱm−1 − 1)  or 𝑐 = 2(ℱm − 2). This means that the converse of Luca’s result holds if ℱm is prime. Moreover, 

we demonstrated that  (𝐹2𝑛 −1,  𝐹2𝑛 −1, 𝑐) is a Heron triple iff 𝑐 = 4𝐹𝑛𝐹𝑛−1 or 𝑐 = 2(𝐹𝑛
2 − 𝐹𝑛−1

2  )  for any Fibonacci prime 

𝐹2𝑛−1 with 𝑛 ≥ 3 and a positive integer 𝑐. Regarding the above results, we conclude that there are many isosceles Heron triangles 

whose sides are Fermat primes or Fibonacci primes. 
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