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Abstract 
 

The inverse minimum spanning tree (IMST) problem is an inverse optimization problem in which one makes the least 

modification to the edge weights of a predetermined spanning tree, to make it the minimum spanning tree with respect to new 

edge weights. For a deterministic environment, the problem has been extensively studied. In an uncertain environment, the 

problem has been studied previously using stochastic edge weights or fuzzy edge weights. However, in the absence of enough 

data, approximation of a random variable is not possible. Further, the unobservable nature of edge weights means that assignment 

of fuzzy weights is also not possible. In this situation, the assignment of edge weights is done based on belief degree of some 

experts in the field. To deal with the problem of belief degree, the uncertainty theory is mostly suited. In this paper, two specific 

models for inverse minimum spanning tree are initiated, taking rough variables and uncertain normal variables as edge weights. 

Based on the properties of uncertainty, two specific models are formulated for the inverse minimum spanning tree problem. The 

models are converted to their equivalent deterministic models, which are solved by some standard optimization method. A 

numerical example is given to illustrate the model and its solution. 

 

Keywords: minimum spanning tree, uncertain minimum spanning tree, rough minimum spanning tree, inverse optimization,  

                      uncertainty theory 

 

 

1. Introduction  
 

In the IMST problem, the objective is to make a 

modification to the weights of edges in a connected weighted 

graph, so that a predetermined spanning tree becomes an MST 

and the total modification of the weights should be minimal. 

The inverse minimum spanning tree (IMST) problem is an 

inverse optimization problem. This problem has great 

importance due to its immense applications in high-speed 

communication, computerized tomography, conjoint analysis, 

behavioral decision making, geographical science, 

performance evaluation, etc., especially in reconstruction 

problems (Liu, 2002, 2004, 2010). The IMST problem was 

 
initialized by Zhang, Liu, and Ma (1996) who proposed a 

combinatorial method to solve the problem. Since then, much 

work has been done on the IMST problem, considering the 

weights of the edges in deterministic as well as in uncertain 

environments. Guan and Zhang (2007) considered a class of 

inverse constrained bottleneck problems under the weighted l∞ 

norm. Wang (2012) proposed two models for the partial 

inverse most unbalanced spanning tree problems under the 

weighted Hamming distance and the weighted l1 norm. The 

research works of Ahuja and Orlin (2000), He, Zhang, and 

Yao (2005), Hochaum (2003) and Zhang, Liu, and Ma (1996) 

made the IMST problem a well-developed inverse 

optimization problem.  

Also, many other works have contributed a lot to 

clarifying and solving the IMST problem and some of its 

derivatives. Several efficient algorithms have been designed to 

solve the IMST problem with as low computational 
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complexity as possible. Sokkalingam, Ahuja, and Orlin (1999) 

developed a specific shortest path algorithm with run time 

O(n3) that can solve the IMST problem. Subsequently Ahuja 

and Orlin (2000) improved the previous O(n3) algorithm to a 

more efficient O(n2log n) time algorithm. He et al., (2005) 

presented some strongly polynomial algorithms for the 

weighted IMST problem under the Hamming distance, and so 

on. In many practical circumstances, the edge weights cannot 

be explicitly determined, and many parameters related to the 

problem may not be fully determined. In view of this non-

determined nature of the parameters, some researchers used 

probability theory or fuzzy theory to deal with the problem. 

Zhang and Zhou (2006) considered the IMST problem where 

the edge weights were taken as random variables and 

stochastic programming models with a hybrid intelligent 

algorithm were presented. Zhang et al., (2014) studied the 

IMST problem with fuzzy edge weights. Dey, Pal, and Pal, 

(2016), Dey, Pradhan, Pal, and Pal (2018), Dey, Son Pal, and 

Long, (2020) have used the interval type-2 fuzzy set to 

represent the arc lengths and a new genetic algorithm was 

proposed to solve the fuzzy shortest path problem and fuzzy 

minimum spanning tree problem. Further, an MST of an 

undirected type-2 fuzzy weighted connected graph was 

investigated, where the edge weights were discrete type-2 

fuzzy variables, by Dan, Majumder, Kar, and Kar (2021) and 

a modified type-2 fuzzy Boruvka’s algorithm was proposed to 

determine the MST. 

However, when no samples are available to estimate 

a probability distribution in the non-deterministic 

environment, the views of some domain experts are used to 

evaluate the belief degree that each event will occur. In order 

to deal with the belief degree rationally, the uncertainty theory 

was developed by Liu (2004) who subsequently applied the 

theory to model many problems under uncertain environment. 

Zhang et al., 2013 have proposed two uncertain programming 

models for the IMST problem, considering the edge weights 

as uncertain linear variables. A bi-objective rough-fuzzy 

quadratic MST problem has been studied for a connected 

graph where the linear and the quadratic edge weights are 

represented as rough variables, and a model was proposed by 

Majumdar, Kar, & Pal (2019) using rough-fuzzy chance 

constrained programming technique. Further, to deal with this 

type of uncertainty, Majumdar et al., (2020) have given two 

models, one an expected value model and the other one is a 

chance constrained model of uncertain multi-objective SPP 

for a weighted connected directed graph, and they formulated 

two multi-objective genetic algorithms to find the SPP. A 

Multi-Objective MST has been studied by Majumdar et al., 

(2022) with indeterminate edge weights. Two models of 

uncertain Multi-Objective MSTs were developed and their 

corresponding crisp equivalence models were investigated and 

solved using the epsilon-constraint method. Other approaches 

to model the uncertainty problems using fuzzy graphs, rough-

fuzzy graph, m-polar fuzzy graphs and their applications are 

available in the literature (Akram, 2019; Akram, Sarwar & 

Dudek, 2021). Some more related work can be found also 

(Chakraborty, Mondal, Alam & Dey, 2021; Lakhwani, 

Mohanta, Dey, Mondal & Pal, 2022; Mohanta, Dey, Pal, Long 

& Son, 2020; Mondal, Dey, De & Pal, 2021; Xiao, Dey & 

Son, 2020). 

           In this paper, a specific IMST problem is analysed 

taking the edge weights as rough variables. A generalization 

of the path optimality condition provided by Ahuja and Orlin 

(2000) is developed to model the uncertain α-minimum 

spanning tree and subsequently the uncertain IMST. Two 

models are developed reducing the rough variable case to a 

deterministic one. In the first case rough variables are 

converted to deterministic values using uncertain normal 

distribution and the model is formed satisfying uncertain 

normal distribution properties, which gives a linear 

programming problem that is solved. In the second case using 

trust distribution, rough variables are converted to certain 

values for different confidence levels and another model for 

IMST is established for different confidence levels satisfying 

trust theory, which is a linear programming problem soluble 

using general methods of LPP. 

   The rest of the paper is organized as follows: In 

Section 2, classical deterministic inverse minimum spanning 

tree problems are discussed and some basic concepts of 

uncertainty theory, uncertain variables, and rough variables 

are presented. In Section 3, uncertain inverse minimum 

spanning tree problem is formulated. Two models of IMST 

are formed taking uncertain normal variables and another 

particular type of with rough variables. In Section 4, the 

equivalent crisp model for uncertain IMST is discussed and 

one numerical example is presented for illustration. In Section 

5, the equivalent crisp model for rough IMST is discussed and 

solved in one numerical example. Finally, the conclusion is 

given in Section 6. 

 

2. Preliminaries 
 

In this section, the classical inverse shortest path 

problem is reviewed and some notions and results of uncertain 

variables and rough variables are given, which shall be used to 

handle the uncertain inverse shortest path. 

 

2.1 Classical inverse minimum spanning tree  

      problem 
 

Let G = (V, E) be a connected graph with vertex set  

V = { v1, v2 , v3, …, vn} and  edge set  E = {1, 2,  … , m}. Let 

ci be the weight of the edge i   E. 

A spanning tree T0 is said to be minimum spanning tree 

if 



Tj

j

Ti

i cc
0

holds for any tree T. The edges of the given 

spanning tree T0 are called the tree edges and the edges not in 

T0 are called the non-tree edges. Hence, the set of all non-tree 

edges is E \ T0. For any non-tree edge j, there exists a unique 

path in T0 which is known as tree path of non-tree edge j and 

denoted by Pj. 

The classic inverse minimum spanning tree (IMST) 

problem is to find some new edge weights such that the pre-

determined spanning tree T0 is a minimum spanning tree with 

respect to the new edge weights and the total modification of 

edge weights is at its minimum. 

Let a new weight vector x = (x1, x2, ... ,xi ….) be 

assigned to the edges. T0 is a minimum spanning tree with 

respect to x and

1

m

i i

i

x c


 is minimum. 
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Path optimality condition: 

As proposed by Ahuja et al. [2], for a given connected graph G = (V,E) with edge weights xi, i ϵ E= {1, 2,.., m}, a spanning  tree  

T0 is a  minimum spanning tree   if and only if, 

  

xi – xj ≤ 0     for  j   E \ T0 ,  i   Pj        (1) 

where E/T0 is the set of non-tree edges, and Pj is the tree path of edge j.      

Using the above path optimality condition, the classical IMST problem can be formulated as 

 

 














jji

m

i

ii

PiTEjxxtosubject

cx

,\,0

min

0

1

       (2) 

where ci and xi are the original and the new edge weights of each edge  i   E, respectively. 

 

2.2 Uncertainty theory 
 

B. Liu (Liu, 2004; Liu, 2010) has developed uncertainty theory which is considered a new approach to deal with 

indeterminacy factors when there is a lack of observed data. In this section, some basic concepts of uncertainty theory are 

reviewed that shall be used in this paper. 

 

2.2.1 Uncertainty measure 
 

Let L be a σ-algebra on a nonempty set  . A set function M: L[0,1] is called an uncertain measure if it satisfies the 

following  axioms 

Axiom 1: (Normality axiom)       M ( ) = 1 for the universal set  

Axiom 2: (Duality axiom)      cM  M( ) 1     for every event Λ 

Axiom 3: (Sub additivity axiom)   For every countable sequence of events 
1 2, ,.....   we have       

 i i

1i=1

M  M
i

 



 
   

 


 
The triplet   , ,  L   is called an uncertainty space. 

Axiom 4: (Product measure) Let    , ,  k k kL   be uncertainty spaces for k = 1, 2……The product uncertain measure is an 

uncertain measure satisfying  

 k k

1 1

M  M
k k



 

 
   

 


 
where, 

k  are arbitrary chosen events for 
kL   for   k = 1,2……   respectively. 

 

2.2.2 Uncertain variable  
 

An uncertain variable ξ is an essentially a measurable function from an uncertainty space to the set of real numbers. Let 

ξ be an uncertain variable. Then the uncertainty distribution of ξ is defined as     x M x     for any real number x. 

Normal uncertain distribution: 

An uncertain variable ξ is called normal if it has a normal uncertainty distribution  

 

  )3(
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        (3) 

Normal uncertainty distribution is denoted by N (e, σ), where e and σ are real numbers with σ > 0. 

An uncertain distribution ϕ is said to be regular if its inverse function ϕ-1(α) exists and is unique for each α ∈ (0,1). 

The normal uncertainty distribution N (e, σ) is also regular and its inverse uncertainty distribution is  

 

)4(
1

ln
3

)(










 ex          (4) 

 

2.3. Rough variable 
 

The concept of a rough variable was introduced by Liu (Liu, 2004) as uncertain variable. The following definitions are 

based on Liu (Liu, 2002). 
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Definition 1. Let Λ be a non-empty set, A be σ- algebra of subsets of Λ, ∆ be an element in A, and π be a non-negative, real- 

valued, additive set function on A. The quadruple (Λ, ∆, A, π) is called a rough space. 

 

Definition 2. A rough variable ξ on the rough space Λ, ∆, A, π) is a measurable function from Λ to the set of real numbers   

such that for every Borel set B of  , we have   |   B A     .  

Then the lower and upper approximation of the rough variable ξ are defined as follows  

 })({ 


           (Upper approximation)  

 })({ 


           (Lower approximation) 

 

Definition 3. ([a, b], [c, d]) with c ≤ a < b ≤ d is a rough variable, where ξ (λ) = λ from the rough space to the set of real numbers 

and }{}{ baanddc   , A is the Borel algebra on Λ, and π is the Lebesgue measure. 

 

Definition 4:   Let (Λ, ∆, A, π) be a rough space. Then the upper and lower trust of event A are defined by 

 
 

 
 

 

 

A A
  Tr A     and   Tr A

 

 


 

 
 

The trust of the event A is defined as 

      
1

Tr A Tr A  T r A
2

 
 

 

Definition 5. The trust distribution function ϕ:(-∞, ∞)  [0,1] of a rough variable ξ is defined as })({)( xTrx   . 

That is, ϕ(x) is the trust that the rough variable ζ takes a value less than or equal to x. 

 

Definition 6. For a given value of r and ξ = ([a, b], [c, d]), the trust of rough events characterized by ζ ≤ r and ζ ≥ r is given by the 

following expressions respectively 
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The trust measure satisfies the following: 

 

Definition 7. Let ξ be rough variables defined on the rough space (Λ, ∆, A, π). The expected value of ξ is defined by 

     
0

0

E Tr  Tr  r dr r dr  
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Definition 8. The trust density function :  R [0, )f    of a rough variable ξ is a function such that   x ( )

x

f y dy


   

holds for all x ∈ (-∞, ∞), where ϕ is trust distribution of ξ. If ξ  = ([a, b], [c, d]) be a rough variable such that c ≤ a < b ≤ d, then 

the trust distribution ϕ(x) = Tr{ξ ≤ x} is 
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and the trust density function is defined as 
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Definition 9. (Expected value of a rough variable) 

Let the trust distribution φ of a rough variable ξ and trust density function f exist. Then the expected value or mean of ξ is defined 

as 



 dxxfxE )(][ , provided the integral exists. 

 

Definition 10. (Variance of a rough variable) 

If ξ is a rough variable with finite expected value E[ξ], then the variance of ξ is defined as V[ξ] = E [(ξ – E[ξ]) 2] 

 

3. Problem Description and Model Formulation 
 

3.1 Uncertain inverse minimum spanning tree 
 

In this section, a specific IMST problem is investigated with uncertain edge weights. Initially, rough variables are 

assigned as uncertain edge weights to each i   E and then these rough variables are approximated by uncertain normal variables 

for further investigation. 

In order to provide a mathematical description of the problem, the following notions are used. 

G = (V, E) be a connected graph with vertex set V = {v1, v2…, vn} and edge set E = {1, 2,…, m} 

T0 is a pre-determined spanning tree of G which needs to be minimum spanning tree after modification of edge weights. 

ci are the original weight of the edge i   E, i = 1, 2, … , m. 

xi is the decision variable representing the new edge weights of the edge i   E. 

ξi (xi) is the uncertain edge weights with respect to xi, i   E. 

As ξi are uncertain variables, the condition (1) for uncertain minimum spanning tree becomes invalid. So, for modelling 

uncertain IMST problem with respect to uncertain edge weights, the concept of α-minimum spanning tree as proposed by Zhang 

et al. is used. 

 

Definition 11. (Uncertain α-minimum spanning tree) 

Given a connected graph G = (V , E) with vertex set V = { v1, v2, … , vn} and edge set E = {1, 2, …. , m} with uncertain edge 

weights ξi, i   E and a given confidence level α, a spanning tree T0 is said to be an uncertain α-minimum spanning tree if 

 

 M  












 
 0Ti Tj

ji
            (9) 

holds for any spanning tree T. 
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3.2 Uncertain path optimality condition 
 

For any connected graph G = (V,E) with uncertain  edge weights ξi, i   E  and a confidence level α , a spanning tree  

T0 is an uncertain α-minimum spanning tree with respect to uncertain edge weights if and only if  

 

 M {ξi(x) ≤ ξj(x)} ≥ α,    jE \ T0, i   Pj       (10) 

where,  E \ T0 is the set of non-tree edges and Pj is the tree path of edge j. 

So the uncertain IMST problem can be formulated as follows 
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           (11) 

where, α is a pre-determined confidence level.  

 

3.3 Crisp equivalent model 
 

In order to solve the model (9), it is required to convert the model into its equivalent crisp model.  

Let ξ be an uncertain variable. Then the uncertainty distribution of ξ is defined as ϕ(x) = M{ξ ≤ x} for any real number x. The 

model (9) can be converted to crisp equivalent form as  
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where ϕi
-1 represents the inverse distribution of uncertain variable ξi. 

In this work, initially the edge weights are uncertain variables as rough variables of the form 

  

([xi – di, xi + di], [xi - 2di, xi + 2di]).         (13) 

In order to find the mean and variance of the rough variable, the following theorem is proposed. 

 

Theorem 1. If ξ = ([a, b], [c, d]) is an uncertain variable with c ≤ a < b ≤ d, the mean and standard deviation of ξ are respectively 

(a + b + c +d)/4 and (a2 + b2 +c2 + d2 + ab + cd – 6e2)/6, where e is the mean. 

 

Proof. Using the trust density function f(x) as per definition  
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From the above theorem, the mean and SD of the rough variable of the form (7) can be calculated as xi and √5 di. 

An empirical study revealed that the problem under uncertain edge weights, the uncertainty can be best studied using 

normal probability distribution. But, in the absence of a sufficient sample of observations, where the subjective estimation of 

experts is required, it is more likely that the experts give their valuable estimation in the form of range of values, which can be 

characterized by rough variables. For further analysis, the subjective estimation in the form of rough variables can be 

approximated by uncertain normal variables with mean and SD calculated using theorem 1. 

Hence, from (4), 


















1
ln

15
),(1 i

iii

d
xx . 



S. Biswal, & G. Ghorai / Songklanakarin J. Sci. Technol. 44 (5), 1353-1364, 2022  1359 

 

So, the model (12) is reduced to the form 

 












































mix

PiTEj
d

x
d

x

tosubject

cx

i

j

j

j
i

i

m

i

ii

,...,2,1,0

,\,
1

ln
15

1
ln

15

min

0

1










                   (14) 

Further, by introducing two auxiliary variables xi
+ and xi

- , the model can further be simplified, where                      
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          0≤ xi
- ≤ ci. 

So the model (12) can be transformed to the form  
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  (15) 

The model (15) is a deterministic linear programming problem and can be solved by any standard technique 

 

3.4 Numerical example 
 

In this section, one numerical example is taken to implement the proposed model. In the following figure, one traffic 

network is considered having six vertices as traffic hub and ten edges as roads. The spanning tree (b, a), (b, d), (b, c), (c, e), (c, f) 

is taken as the predetermined spanning tree which is to be converted to minimum spanning tree after modification of the weights. 

There are three weights on each road, where ci and xi are the original and new width of the road i, and ξi denotes the uncertain 

travelling time on road i, which are assumed to be rough variables with respect to xi. The level of confidence α is taken as 0.9. In 

Table 1, detailed data are shown. 
 

Table 1. Data table 
 

Edge Edge no Original parameter (ci) Uncertain edge weight(ξi(xi)) mean SD Φ-1(xi ,α) 

       

(a, b) 1 100 ([x1-10 , x1+10] , [x1-20 , x1+20]) x1 10 5  x1 +27.1 

(b, d) 2 50 ([x2-10 , x2+10] , [x2-20 , x2+20]) x2 10 5  x2 +27.1 

(b, c) 3 60 ([x3-10 , x3+10] , [x3-20 , x3+20]) x3 10 5  x3 +27.1 

(c, e) 4 130 ([x4-10 , x4+10] , [x4-20 , x4+20]) x4 10 5  x4 +27.1 

(c, f) 5 140 ([x5-10 , x5+10] , [x5-20 , x5+20]) x5 10 5  x5 +27.1 

(a, d) 6 60 ([x6-10 , x6+10] , [x6-20 , x6+20]) x6 10 5  x6 +27.1 

(d, e) 7 80 ([x7-10 , x7+10] , [x7-20 , x7+20]) x7 10 5  x7 +27.1 

(d, c) 8 50 ([x8-10 , x8+10] , [x8-20 , x8+20]) x8 10 5  x8 +27.1 

(b, e) 9 160 ([x9-10 , x9+10] , [x9-20 , x9+20]) x9 10 5  x9 +27.1 

(e, f) 10 120 ([x10-10 , x10+10] , [x10-20 , x10+20]) x10 10 5  x10 +27.1 
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Figure 1. Road network 

 

From the above data, the following uncertain programming model is obtained
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    (16) 

where the non-tree edge set E \ T0 = {6, 7, 8, 9, 10}, Pj is the tree path of non-tree edge j. 

As di is taken uniformly as 10 for each i =1, 2..., 10, the model is transformed to the form 
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which which is a linear programming model. The solution to the model is 

xi
+ = {0, 0, 0, 0, 0, 0, 14, 74, 24, 0, 34} 

xi
- = {50, 0, 10, 0, 10, 0, 0, 0, 0, 0 } 

xi = {50, 50, 50, 130, 130, 74, 154, 74, 160, 154}. 

The total modification is 216. 

  

4. Rough Inverse Minimum Spanning Tree 
 

In Section 3.1, if ξi are taken as rough variables, the condition (1) for uncertain minimum spanning tree becomes 

invalid. So, for modelling uncertain IMST problem with respect to uncertain edge weights, the concept of rough α-minimum 

spanning tree is proposed 

 

Definition 12. (Rough α-minimum spanning tree) 

Given a connected graph G = (V , E) with vertex set V = { v1, v2, … , vn} and edge set E = {1, 2, …. , m} with rough edge 

weights ξi, i   E and a given confidence level α, a spanning tree T0 is said to be an rough α-minimum spanning tree if 

 

 Tr  












 
 0Ti Tj

ji
         (18) 

holds for any spanning tree T. 

 

4.1 Rough path optimality condition 
 

For any connected graph G = (V,E) with rough edge weights ξi, i   E and a confidence level α, a spanning tree T0 is a 

rough α-minimum spanning tree with respect to rough edge weights if and only if  
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 Tr{ξi(x) ≤  ξj(x)} ≥ α,    jE \ T0,  i   Pj       

where,  E \ T0 is the set of non-tree edges and Pj is the tree path of edge j. 

So the rough IMST problem can be formulated as follows 
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     (19) 

where, α is a pre-determined confidence level. 

  

4.2. Crisp equivalent model 
 

In order to solve the model (19), it is required to convert the model into its equivalent crisp model. In this model the 

rough weight of the edge i is taken as ξi = ([xi –di, xi + di], [xi – 2di, xi + 2di], where di is a positive constant.  

Hence, ξi - ξj =([xi –xj – di –dj, xi – xj + di + dj], [xi – xj – 2di – 2dj, xi – xj + 2di + 2dj]) 

       = ([a, b], [c, d]) (say) 

 

Theorem 2. If ξ = ([a, b], [c, d]) is a rough variable with c ≤ a < b ≤ d, then for a predetermined confidence level α,(0< α ≤ 1), 

{Tr {ξ ≤ r} ≥ α} is equivalent to 
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After simplification, (6) is equivalent to the following form  

(i)  xi – xj ≤ 2(1 - 4α) (di +dj)   if α ≤ 1/8 

(ii) xi – xj ≤ 2(3 - 4α) (di +dj)   if α ≥ 7/8 

(iii) xi – xj ≤ (4/3 - 8α/3) (di +dj)                 if 1/8 < α < 7/8 

Hence, depending on the values of α, three cases shall arise. 

Case 1: When α ≤ 1/8 

The model (19) can be converted to crisp equivalent form as  
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Case 2:  When α ≥ 7/8, the model (7) can be converted to crisp equivalent form as
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Case 3: When 1/8 < α < 7/8, the model (7) can be converted to crisp equivalent form as
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Further, by introducing two auxiliary variables xi
+ and xi

- , the model can further be simplified, where  
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xi
+  ≥ 0 

0 ≤ xi
- ≤ ci. 

Hence, the model (*) can be transformed to  
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So the model (**) can be transformed to  
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So the model (***) can be transformed to  

 

1 1

0

min

4
(1 2 ) ( ) , \ , (22)

3

0, 1, 2, ... ,

0 1,2, ...,

m m

i i

i i

i i j j i j i j j

i

i i

x x

subject to x x x x d d c c j E T i P

x i m

x c i m



 

 

   









         


 


  

 
  (22) 

The models (20), (21) and (22) are deterministic linear programming problems and can solved by using any standard technique. 

 

4.3 Numerical example 
 

In this section, one numerical example is taken to implement the proposed model. In the following figure (Figure 2), 

one traffic network is considered having six vertices as traffic hub and ten edges as roads. The spanning tree ba, bd, bc, ce, cf is 

taken as the predetermined spanning tree which is to be converted to minimum spanning tree after modification of the weights. 

There are three weights on each road, where ci and xi are the original and new width of the road i, and ξi denotes the uncertain 

travelling time on road, which are assumed to be rough variables with respect to xi. The level of confidence α is taken as 0.9. 
 

Table 2. Edge weights 
 

Edge Edge No Original parameter (ci) Uncertain edge weight (ξi(xi)) 

    

(a, b) 1 100 ([x1-10 , x1+10] , [x1-20 , x1+20]) 

(b, d) 2 50 ([x2-10 , x2+10] , [x2-20 , x2+20]) 
(b, c) 3 60 ([x3-10 , x3+10] , [x3-20 , x3+20]) 

(c, e) 4 130 ([x4-10 , x4+10] , [x4-20 , x4+20]) 

(c, f) 5 140 ([x5-10 , x5+10] , [x5-20 , x5+20]) 
(a, d) 6 60 ([x6-10 , x6+10] , [x6-20 , x6+20]) 

(d, e) 7 80 ([x7-10 , x7+10] , [x7-20 , x7+20]) 

(d, c) 8 50 ([x8-10 , x8+10] , [x8-20 , x8+20]) 
(b, e) 9 160 ([x9-10 , x9+10] , [x9-20 , x9+20]) 

(e, f) 10 120 ([x10-10 , x10+10] , [x10-20 , x10+20]) 
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Figure 2. Traffic network 

 

From the above data, the following programming model is obtained, where the non-tree edge set E\T0 = {6, 7, 8, 9, 10}, 

Pj is the tree path of non-tree edge j. As di is taken uniformly as 10 for each i = 1, 2,., 10, the model is transformed to the 

following form 
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which is a linear programming model. 

Using LiPS software, the following result was obtained 

xi
+ = {0, 0, 0, 0, 0, 0, 14, 74, 24, 0, 34} 

xi
- = {50, 0, 10, 0, 10, 0, 0, 0, 0, 0 } 

xi = {50, 50, 50, 130, 130, 74, 154, 74, 160, 154}  

The total modification is 216.  

 

5. Conclusions 
 

In this paper, two special types of models for IMST 

problem were considered with uncertain edge weights and 

then transformed to the corresponding crisp equivalent 

models. In the first case, the edge weights were taken as rough 

variables. The mean and standard deviation of each rough 

variable were obtained. Then the rough variables were 

approximated by the uncertain normal variables with the mean 

and standard deviation of the rough variables. The uncertain 

inverse minimum spanning tree problem was reduced to a 

deterministic linear programming model, which can be solved 

by any standard method. In this case, the rough variables, 

deviations from xi are symmetrical. In a case of non-

symmetric deviation, the variance of the rough variable shall 

not be independent of xi, but rather a linear expression in xi. 

So, the standard deviation of the rough variable shall be of the 

form BAx i   for some constants A and B. So, the model 

can be transformed to a non-linear programming problem 

which needs further investigation. In the second case, using 

trust distribution, the rough IMST was converted to a crisp 

equivalent model as a linear programming model and solved 

using a standard method. Two alternative ways were 

presented to solve the IMST problem. Here we have taken a 

particular type of rough variable of the form [a, b, c, d], while 

by taking other forms of rough variables different models of 

IMST can be formed. IMST with uncertain edge weights 

could be solved using some other methods like Genetic 

Algorithm, and could be studied in fuzzy graph, rough fuzzy 

graph etc. 
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