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Abstract 
 

A situation giving rise to a violation of the normality assumption in discriminant analysis is that which involves count 

observations. For a two-variable case involving count observations, this paper presents a new discriminant analysis approach when 

one variable is observed conditional on the other. Two cases involving Poisson-Binomial and Poisson-Poisson distributions were 

considered. The derived allocation rules are based on the resulting joint distribution of the two count variables. Applicability of the 

suggested allocation rules in discriminant analysis involving count data and its performance in comparison with Fisher linear 

discriminant rule was studied under different conditions. Results obtained show promising applicability of the suggested allocation 

rules when compared with the Fisher linear discriminant method. 
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1. Introduction  
 

Normality assumption is fundamental for useful 

inference in linear discriminant analysis. Unfortunately, most 

real-life situations are generated by mechanisms that violates 

this assumption. Such real-life phenomena include those 

involving discrete distributions that are amenable to count data. 

The most common probability distributions often used in 

analyzing count data are the Poisson and the negative Binomial 

distribution (Witten, 2011). In analyzing count data, Poisson 

variates are mostly faced with the problem of under- (or over) 

dispersion (Inouye, Yang, Allen, & Ravikumar, 2017). With 

Poisson variates in discriminant analysis, the authors are of the 

opinion that it may no longer be appropriate to use the linear 

discriminant analysis approach whose allocation rule is derived 

based on normality assumption. An optimal approach for 

discriminant analysis in this situation would be to derive the 

allocation rule based on the originating distribution (Mbaeyi & 

Nweke, 2021), and not the assumed normal distribution. Some 

studies concerning classification analysis involving count data 

are available in prior literature. Examples are Poisson linear 

discriminant analysis (Witten 2011), Negative Binomial linear 

 
discriminant analysis (Dong, Zhao, Tong, & Wan, 2016), zero 

inflated Poisson logistic discriminant analysis (Zhou, Wan, 

Zhang, & Tong, 2018), zero inflated negative Binomial logistic 

discriminant analysis (Zhu, Yuan, Shu, Liao, Zhao, & Zhou, 

2021), and a decision tree model for count data (Wah, 

Nasaruddin, Voon, & Lazim, 2012). These methods are either 

based on no (or very weak) assumptions, or some inconsistent 

transformations. In addition, conditional relationships between 

variables were not adequately considered. 

A typical scenario which this work attempts to 

consider is, for example, road accident occurrences that may 

lead to one or more casualties. The casualties are characterized 

by the extent of physical injury or fatality. Let 𝑋𝑖 be the number 

of accidents in a given location for a given interval. 𝑋𝑖 is 

assumed to follow Poisson distribution with parameter 𝜃. 

Suppose that the variable 𝑌𝑖 assumes the value 1 with 

probability 𝑝 if the 𝑖th accident is fatal, and the value 0 with 

probability 𝑞 = 1 − 𝑝 if the 𝑖th accident is not fatal, then 𝑌 =
𝑌1 + 𝑌2 + ⋯ + 𝑌𝑋 represents the number of fatal accidents out 

of a total of 𝑋 accidents. In this case, 𝑌𝑖 is better represented by 

a Binomial distribution with parameter 𝑝. It is expected that 

𝑌 ≤ 𝑋 and the bivariate distribution 𝑓(𝑥, 𝑦) represents the joint 

distribution of number of accidents and cases of fatal accident. 

One may also consider jointly the number of accidents 𝑋𝑖 and 

the corresponding number of casualties 𝑍𝑖 in which case both 

𝑋𝑖 and 𝑍𝑖 follow Poisson distribution. The number of accidents 
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together with the corresponding casualty indices can be 

classified as having resulted from one of either a clear or a 

cloudy weather. 

 

2. Methodology 
 

Based on the typical scenario described in section I 

which this work attempts to focus on, the Poisson and Binomial 

discrete distributions shall be considered. Joint distribution of 

Poisson-Binomial and Poisson-Poisson types shall be 

considered, and, on the basis of the derived joint distribution, 

allocation rule for classifying observation 𝑤 = (𝑥, 𝑦) shall then 

be obtained and applied consequently. 

 

2.1 Poisson-binomial  
 

Let X be a Poisson random variable with parameter 

𝜆, and Y be a Binomial random variable with parameters 𝑛, 𝑝 

and 𝑞. That is, 

 

𝑓(𝑥) =
𝑒−𝜆𝜆𝑥

𝑥!
;   𝜆 > 0, 𝑥 = 0,1,2, …                         (1) 

 

and 
 

𝑓(𝑦) = (𝑛
𝑦

) 𝑝𝑦𝑞𝑛−𝑦; 𝑦 = 0,1,2, … , 𝑛                (2) 

 

where 𝑛 is the number of times the event of interest 

was observed, 𝑝 is the probability of success in each of the 𝑛 

observed events, 𝑞 is the probability of failure in each of the 𝑛 

observed events, and 𝜆 is the mean number of events. 𝑦 is a 

realization of observations with defined attribute when 

observing 𝑥 such that 𝑃(𝑦𝑖 = 1) = 𝑝 whenever the attribute is 

present in 𝑥 and 𝑃(𝑦𝑖 = 0) = 𝑞 = 1 − 𝑝 whenever the attribute 

is not present in 𝑥. It follows that 𝑦 observation is made given 

that 𝑥 is observed already. Hence, we can now define the 

conditional distribution of 𝑦 given 𝑥 as (Ramachandran & 

Tsokos, 2009). 

 

𝑓(𝑦|𝑥) = (𝑥
𝑦

) 𝑝𝑦𝑞𝑥−𝑦; 𝑦 = 0,1,2, … , 𝑥                (3) 

 

Combining (1) and (3), the joint distribution of 𝑥 and 

𝑦 is given as 

 

𝑓(𝑥, 𝑦) =
𝑒−𝜆𝜆𝑥𝑝𝑦𝑞𝑥−𝑦

(𝑥−𝑦)!𝑦!
; 𝑥 = 0,1,2, … ; 𝑦 = 0,1,2, … , 𝑥        

                                                                 (4) 

 

The marginal of (4) is a discrete Poisson probability 

mass function (See Appendix for proof). 

Following Kendall & Stuart (1967), it can easily be 

shown that for (3) and (4),  

    

 𝐸(𝑦|𝑥) = 𝑥𝑝                                (5) 

    

 𝑉𝑎𝑟(𝑦|𝑥) = 𝑥𝑝𝑞                             (6) 

    

 𝐸(𝑥, 𝑦) = 𝑝𝜆(𝜆 + 1)                           (7) 

    

 𝐶𝑜𝑣(𝑥, 𝑦) = 𝑝𝜆                            (8) 

𝜌(𝑥, 𝑦) = +√𝑝                  (9) 

 
The maximum likelihood estimates of the parameters 

of (4) are 𝜆 = 𝑥̅  and 𝑝 =
𝑦̅

𝑥̅
. 

For the purpose of classification, optimal allocation 

rule for classifying the observation 𝒘 = (𝑥, 𝑦) into group D1 or 

group D2 can be derived using (4). Let 𝐿1(𝑥, 𝑦, 𝜆1, 𝑝1) and 

𝐿2(𝑥, 𝑦, 𝜆2, 𝑝2) be the likelihood functions of (4) for group D1 

and group D2, respectively. According to Anderson (1958), 

observation 𝒘 = (𝑥, 𝑦) can be classified as belonging to group 

D1 if 𝐿1(𝑥, 𝑦, 𝜆1, 𝑝1) ≥ 𝐿2(𝑥, 𝑦, 𝜆2, 𝑝2). That is, if  

 

𝑅: (
𝜆1

𝜆2
)

𝑥
(

𝑝1

𝑝2
)

𝑦
exp (𝜆2 − 𝜆1) ≥ 1              (10) 

 

By taking logarithm of (10) and simplifying, we have 

that 

   

 𝑅: 𝑥ln (
𝜆1

𝜆2
) + 𝑦ln (

𝑝1

𝑝2
) ≥ (𝜆1−𝜆2)              (11) 

 

Let the prior probabilities of an observation falling 

into group D1 or group D2 be 𝜋1 and 𝜋2 (𝜋1 + 𝜋2 = 1) 

respectively, then the Bayes’ rule can obtained by comparing 

𝜋𝑖𝐿𝑖(𝑥, 𝑦, 𝜆𝑖 , 𝑝𝑖), 𝑖 = 1,2 in which case we are to allocate 

observation 𝒘 = (𝑥, 𝑦) to group D1 if  

 

𝑅: 𝑥ln (
𝜆1

𝜆2
) + 𝑦ln (

𝑝1

𝑝2
) ≥ ln (

𝜋2

𝜋1
) + (𝜆1−𝜆2)       (12) 

 

Otherwise, observation 𝒘 = (𝑥, 𝑦) is allocated to 

group D2. Where equal prior probability is assumed for group 

D1 and D2, (12) remains as in (11). 

 

2.2 Poisson-poisson  
 

Let 𝑘 and 𝑟 be two available variables for 

consideration in a discriminant analysis. Both 𝑘 and 𝑟 are 

independent Poisson variates with parameters 𝜆 and 𝜃 

respectively.  

 

𝑔(𝑘) =
𝑒−𝜆𝜆𝑘

𝑘!
;   𝜆 > 0, 𝑘 = 0,1,2, …                       (13) 

 

and 

 

𝑔(𝑟) =
𝑒−𝜃𝜃𝑟

𝑟!
;   𝜃 > 0, 𝑟 = 0,1,2, …              (14) 

 

Observations 𝑟 are made given that 𝑘 has been 

observed. Thus, the conditional distribution of 𝑟 given that 𝑘 

has been observed is given as 

 

𝑔(𝑟|𝑘) =
𝑒−𝜃𝑘(𝜃𝑘)𝑟

𝑟!
;  𝑟 = 0,1,2, …                               (15) 

 

As above, combining (13) and (15), the joint 

distribution of  𝑟 and 𝑘 is given in (16) as 

 

𝑔(𝑘, 𝑟) =
𝜆𝑘(𝜃𝑘)𝑟exp{−(𝜆+𝜃𝑘)}

𝑘!𝑟!
; 𝜆, 𝜃 > 0, 𝑘 =

0,1,2, … ; 𝑟 = 0,1,2, …               (16) 
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As in (4), the marginal of (16) is also a univariate 

Poisson probability mass function (See Appendix for proof). 

Some properties of (15) and (16) are readily given as 

    

 𝐸(𝑟|𝑘) = 𝜃𝑘                  (17) 

    

 𝑉𝑎𝑟(𝑟|𝑘) = 𝜃𝑘                            (18) 

    

 𝐸(𝑘, 𝑟) = 𝜃𝜆(𝜆 + 1)                 (19) 

    

 𝐶𝑜𝑣(𝑘, 𝑟) = 𝜃𝜆                 (20) 

    

 𝜌(𝑘, 𝑟) = √
𝜃

𝜃+1
                      (21) 

 

The maximum likelihood estimates of the parameters 

of (16) are also given as 𝜆 = 𝑘̅  and 𝜃 =
𝑟̅

𝑘̅
. To perform 

discriminant analysis using the values of the variables 𝑟 and 𝑘, 

the optimal allocation rule is best derived using the joint 

distribution in (16). By defining 𝐿1(𝑘, 𝑟, 𝜆1, 𝜃1) and 

𝐿2(𝑘, 𝑟, 𝜆2, 𝜃2) to be the likelihood functions of (16) for group 

D1 and group D2 respectively, the allocation rule will be to 

allocate observation 𝒘 = (𝑘, 𝑟) to group D1 (be classified as 

belonging to group D1) if 𝐿1(𝑘, 𝑟, 𝜆1, 𝜃1)/𝐿2(𝑘, 𝑟, 𝜆2, 𝜃2) ≥ 1. 

That is, if 

   

 𝑅: (
𝜆1

𝜆2
)

𝑘
(

𝜃1

𝜃2
)

𝑟
exp (𝜆2 − 𝜆1) ≥ 1              (22) 

 

By also taking logarithm of (22) and simplifying, we 

have that 

   

 𝑅: 𝑘ln (
𝜆1

𝜆2
) + 𝑟ln (

𝜃1

𝜃2
) ≥ (𝜆1−𝜆2)              (23) 

 

Let the prior probabilities of observation falling into 

group D1 and group D2 be 𝜋1 and 𝜋2 (𝜋1 + 𝜋2 = 1) 

respectively, then the Bayes’ rule can obtained by comparing 

𝜋𝑖𝐿𝑖(𝑘, 𝑟, 𝜆𝑖 , 𝜃𝑖), 𝑖 = 1,2 in which case we are to allocate 

observation 𝒘 = (𝑘, 𝑟) to group D1 if  

 

𝑅: 𝑘ln (
𝜆1

𝜆2
) + 𝑟ln (

𝜃1

𝜃2
) ≥ ln (

𝜋2

𝜋1
) + (𝜆1−𝜆2)        (24) 

 

Otherwise, observation 𝒘 = (𝑘, 𝑟) is allocated to 

group D2. Where equal prior probability is assumed for group 

D1 and D2, (24) remains as in (23). 

 

2.3 Fisher linear discriminant analysis 
 

Fisher linear discriminant (FLD) analysis is a 

generalization of linear discriminant analysis, a method 

commonly used to find a linear combination of attributes that 

characterizes or separates two or more groups of objects. Given 

a set of independent multivariate observations, the FLD 

assumes that observations are distributed multivariate normal 

with vector of means which varies in each group but a 

covariance matrix that is common across all groups. FLD rule 

maximizes the ratio between sum of squares between and sum 

of squares within and then finds a linear combination of the 

predictors to predict group membership. Typically, given a 

vector 𝒙 of observations assumed to be multivariate normal 

with mean 𝝁𝒊(𝑖 = 1,2) and covariance matrix 𝚺 coming from 

one of two groups and assuming equal prior probabilities of 

group membership, the FLD allocation rule is to classify 

observation 𝒙 as belonging to group 𝐺1 if  
 

𝒙′𝚺−1(𝝁1 − 𝝁2) ≥
1

2
(𝝁1 + 𝝁2)′𝚺−1(𝝁1 − 𝝁2) 

 

It has been argued that discriminant analysis is 

relatively robust to violations of normality and 

homoscedasticity assumptions (Hardle & Simar, 2007). Hence, 

in line with the focus of this work, this study shall consider an 

application of FLD to count data. 

 

3. Analysis, Results and Discussion 
 

In other to demonstrate the applicability of the 

allocation rules presented in section (2), both artificial and real-

life data were considered. For the artificial data, random 

samples of Poisson and Binomial variates were generated under 

various sample sizes (𝑛1=𝑛2=20, 50, 100, 150, 200, 300, 500, 

750, 1000, 1500, 2000) for a two-group discriminant analysis. 

In other to evaluate the allocation rules in (12) and (24), 𝜆1 =
1.2, 𝜆2 = 0.8, 𝜃1 = 0.42, 𝜃2 = 0.31, 𝑝1 = 0.42 and 𝑝2 = 0.31 

were used in generating Poisson and Binomial data. 𝜆1 and 𝜆2 

are Poisson parameters for variable 𝑥1 in groups 𝐷1 and 𝐷2. 

Similarly, 𝜃1 and  𝜃2 are Poisson parameters for variable 𝑥2 in 

groups 𝐷1 and 𝐷2, while 𝑝1 and 𝑝2 are Binomial parameters for 

variable 𝑥2 in groups 𝐷1 and 𝐷2 respectively. As a way of 

introducing over-dispersion and under-dispersion into the 

dataset, 20% of each of 𝑛1 and 𝑛2 was generated by replacing 

𝜆1 and 𝜆2 by 9.5𝜆1 and 9.5𝜆2 respectively to obtain over-

dispersed data while under-dispersion was introduced by 

replacing 𝜆1 and 𝜆2 by 0.125𝜆1 and 0.125𝜆2 respectively. The 

Poisson-Binomial (P-B) and Poisson-Poisson (P-P) based 

allocation rules were then applied to the generated data for a 

two-group discriminant analysis. For comparison purpose, the 

Fisher linear discriminant (FLD) analysis procedure was also 

applied to the generated data. Error rates resulting from the P-

B, P-P and FLD allocation rules were obtained and are 

presented when the data are (i) under-dispersed, (ii) 

undispersed, and (iii) over-dispersed. Error rate is a measure of 

misclassifications made by any given allocation rule. It is 

simply obtained by dividing the sum of misclassified 

observations in groups 𝐷1 and 𝐷2 by the total number of 

observations.  

For the real-life data, record of accidents in the UK 

was extracted from https://www.kaggle.com/datasets/benoit72/ 

uk-accidents-10-years-history-with-many-variables?select=Ve 

hicles0514.csv and analyzed as in two-group discriminant 

analysis. The data contain many variables related to road 

accidents in the UK between 2005 and 2014, some of which 

include weather, location, latitude/longitude, accident severity, 

casualty severity, casualty type, age of casualty, age of driver, 

age of victim, etc. Number of accidents (x) and number of 

casualties (y) were used for the P-P approach while number of 

casualties (k) and incidences of fatal casualties (r) were used 

for the P-B approach. After extraction, 𝑛 = 20 observed cases 

of accidents classified under “Clear” and “Cloudy” weather for 

the period 2005 – 2014 were available for analysis. All analysis 

was performed in R (2020) programming environment and the 

results are presented in Table 1 and Table 2 below. 
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Table 1. Error rates of the P-P and FLD under various types of dispersion and sample sizes  
 

Sample size (n) 
Over-dispersed Under-dispersed Undispersed 

P-P FLD P-P FLD P-P FLD 
       

20 

50 

100 
150 

200 

300 
500 

750 

1000 
1500 

2000 

0.3750 

0.5000 

0.5150 
0.4567 

0.4225 

0.4367 
0.4390 

0.4327 

0.4380 
0.4347 

0.4303 

0.4000 

0.4800 

0.4900 
0.4867 

0.4400 

0.4433 
0.4790 

0.4500 

0.4555 
0.4590 

0.4435 

0.2750 

0.2800 

0.2450 
0.3133 

0.2950 

0.2900 
0.3020 

0.3307 

0.3320 
0.3203 

0.3215 

0.4000 

0.4900 

0.4550 
0.4533 

0.4350 

0.4217 
0.4350 

0.4333 

0.4400 
0.4350 

0.4235 

0.2750 

0.3600 

0.3600 
0.3800 

0.3500 

0.3600 
0.3610 

0.3760 

0.3895 
0.3813 

0.3840 

0.4250 

0.4200 

0.4200 
0.4267 

0.4150 

0.4200 
0.4200 

0.4387 

0.4305 
0.4253 

0.4100 
       

 

Table 2. Error rates of P-B and FLD under various types of dispersion and sample sizes 

 

Sample size (n) 
Over-dispersed Under-dispersed Undispersed 

P-B FLD P-B FLD P-B FLD 
       

20 

50 

100 
150 

200 

300 
500 

750 

1000 
1500 

2000 

0.5000 

0.5000 

0.4950 
0.4667 

0.4450 

0.4833 
0.4300 

0.4540 

0.4615 
0.4373 

0.4228 

0.3000 

0.3333 

0.3800 
0.3567 

0.3100 

0.3167 
0.3530 

0.3440 

0.3320 
0.3393 

0.3545 

0.5000 

0.5100 

0.4050 
0.4500 

0.4300 

0.4200 
0.4340 

0.4773 

0.4210 
0.3937 

0.4290 

0.3250 

0.3600 

0.3300 
0.3433 

0.3275 

0.3333 
0.3500 

0.3460 

0.3465 
0.3440 

0.3493 

0.4750 

0.4100 

0.5050 
0.4967 

0.4950 

0.4883 
0.4950 

0.4693 

0.4900 
0.4893 

0.4935 

0.325 

0.3700 

0.3300 
0.3533 

0.3200 

0.3217 
0.3370 

0.3447 

0.3355 
0.3380 

0.3448 
       

 

The results show the applicability of the suggested 

allocation rules. Since the problem of dispersion is common 

with Poisson variates, it suffices to consider various forms of 

dispersion in the application. Generally, in terms of error rate 

as presented in Table 1, P-P performed better than FLD both 

when there is under-dispersion and no dispersion in the dataset. 

However, with over-dispersed data, FLD fairly outperformed 

P-P. Error rates resulting from FLD in Table 1 appear to show 

slight evidence of stability regardless of the form of dispersion 

present in the data, as the error rates were between 

approximately 0.4100 and 0.4900. From the results presented 

in Table 2, FLD has an overall better performance than the P-B 

approach. Again, a fair case-wise stability in error rate was 

noted for both P-B and FLD. Hence, the effect of changing 

sample size appear not to noticeably affect the error rate of P-

B or FLD, but this appears not to be the case with the various 

forms of dispersion considered. Moreover, introducing a 

binomial variate for the P-B analysis appears to have slightly 

improved the error rates of FLD in Table 2 when compared with 

those of FLD in Table 1, but such was not the case for the P-B 

approach. In Tables 1 and 2, the error rates for P-P, P-B and 

FLD show no trend with respect to increasing/decreasing 

sample size, hence, it may not be inferred that increasing/ 

decreasing sample size improves error rate of any of the 

approaches considered in this work. On a general note, the 

lower error rates from FLD may not be valid enough to justify 

its usage in discriminant analysis when available data are not 

normally distributed. In case the argument persists, the optimal 

answer would depend on a choice between having a lower error 

rate using an incorrect methodology or having a moderate error 

rate using a correct methodology.   

For the real-life data, all the approaches considered 

performed almost equally in terms of their respective error 

rates. When the data involving number of accidents (x) and 

number of casualties (y) were analyzed, the error rates were 

0.4880 and 0.5000 for P-P and FLD respectively. Similarly, 

with the data involving number of casualties (k) and incidences 

of fatal casualties (r), corresponding error rates were 0.4920 and 

0.5000 for P-B and FLD respectively. Unlike in the artificial 

datasets, error rates from FLD were not better than P-P and P-

B. However, it can easily be observed that the former looks 

similar to the result in Table 1 when  𝑛 = 20 while the latter is 

somewhat dissimilar with the 𝑛 = 20 case in Table 2. Hence, 

whereas applicability of the various approaches has been 

demonstrated with a real-life dataset, more cases representing 

real-life scenarios need to be analyzed in other to make valid 

inference regarding these approaches and their application in 

real-world data analysis. 

 

4. Conclusions 
 

This paper has presented allocation rules based on 

discrete distributions amenable to count data. The allocation 

rules suggested in this paper demonstrated straightforward 

applicability and ability to handle cases of under-dispersion and 

over-dispersion in Poisson variates. The suggested allocation 
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rules are amenable to simple error rate estimation procedures, 

cope with the problem of small available samples, and their 

implementation is easy in any user-defined program package. 

The performance of the suggested allocation rules in 

comparison with the Fisher linear discriminant analysis 

indicates that an appreciable level of accuracy can be gained 

when allocation rules are derived based on the originating 

distribution of the data. 

 

References 
 

Dong, K., Zhao, H., Tong, T., & Wan, X. (2016). Negative 

binomial linear discriminant analysis for RNA-seq 

data. BMC Bioinformatics. doi:10.1186/s12859-016-

1208-1 

Hardle, W, & Simar L. (2007). Applied multivariate statistical 

analysis. Berlin Heidelberg, Germany: Springer. 

Inouye, D. I., Yang, E., Allen, G. I., & Ravikumar, P. (2017). 

A review of multivariate distributions for count data 

derived from the Poisson distribution. Computational 

Statistics, 9(3), e1398. Retrieved from https://doi. 

org/10/1002/wics.1398 

Kendall, M. G., & Stuart, A. (1967). The advanced theory of 

statistics. London, England: Griffin. 

Mbaeyi, G. C. & Nweke, C. J. (2021). Discriminant analysis 

with non normal variables. Communication in 

Statistics – Theory and Methods. doi:10.1080/0361 

0926.2021.1908563 

Ramachandran, K. M. & Tsokos, C. P. (2009). Mathematical 

statistics with applications. London, England: 

Elsevier Academic Press.  
R Core Team (2020). R: A language and environment for 

statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria. Retrieved from 

https://www.R-project.org/ 

Wah, Y. B., Nasaruddin, N., Voon, W. S. & Lazim, M. A. 

(2012). Decision tree model for count data. 

Proceedings of the World congress in Engineering, 

1, 330-335. Retrieved from http://www.iaeng.org/ 

publication/WCE2012/WCE2012_pp330-335.pdf 

Witten, D. (2011). Classification and clustering of sequencing 

data using a Poisson model. Annals Applied 

Statistics, 5, 2493-2518. doi:10.1214/11-AOAS493. 

Zhou, Y., Wan, X., Zhang, B. & Tong, T. (2018). Classifying 

next-generation sequencing data using a zero-inflated 

Poisson model. Bionformatics, 34, 1329-1335. doi: 

10.1093/bioinformatics/btx768  

Zhu, J., Yuan, Z., Shu, L., Liao, W., Zhao, M. & Zhou, Y. 

(2021). Selecting classification methods for small 

samples of next-generation sequencing data. 

Frontiers in Genetics, 12, doi:10.3389/fgene.2021. 

6422 

 

 

Appendix 

 
Marginal of P-B 

𝑓(𝑥, 𝑦) =
𝑒−𝜆𝜆𝑥𝑝𝑦𝑞𝑥−𝑦

(𝑥 − 𝑦)! 𝑦!
= (

𝑥!

𝑥!
) (

𝑒−𝜆𝜆𝑥𝑝𝑦𝑞𝑥−𝑦

(𝑥 − 𝑦)! 𝑦!
) =

𝜆𝑥𝑒−𝜆

𝑥!
(

𝑥

𝑦
) 𝑝𝑦𝑞𝑥−𝑦 

𝑓𝑋(𝑥) =
𝑓(𝑥, 𝑦)

𝑓(𝑦|𝑥)
=

𝜆𝑥𝑒−𝜆

𝑥!
(𝑥

𝑦
) 𝑝𝑦𝑞𝑥−𝑦

(𝑥
𝑦

) 𝑝𝑦𝑞𝑥−𝑦
=

𝜆𝑥𝑒−𝜆

𝑥!
; 𝑥 = 0,1,2, … 

Marginal of P-P 

𝑔𝐾(𝑘) =
𝑔(𝑘, 𝑟)

𝑔(𝑟|𝑘)
=

𝜆𝑘(𝜃𝑘)𝑟exp{−(𝜆 + 𝜃𝑘)}
𝑘! 𝑟!

𝑒−𝜃𝑘(𝜃𝑘)𝑟

𝑟!

=
𝜆𝑘exp{−𝜆}

𝑘!
; 𝑘 = 0,1,2 

 

R Source Code 

library(MASS) 

## Over-Dispersed P-P and FLD 

Overdispersed<-function(n1,n2){ 

set.seed(200) 

lambda1<-1.2 

lambda2<-0.8 

theta1<-0.42 

theta2<-0.31 

xx<-rpois(0.8*n1,lambda1) 

x<-rpois(0.2*n1,lambda1*9.5) 

x11<-c(x,xx) 

x21<-rpois(n1,theta1) 

XX<-rpois(0.8*n2,lambda2) 

X<-rpois(0.2*n2,lambda2*9.5) 

x12<-c(XX,X) 

x22<-rpois(n2,theta2) 

g1<-rep(1,n1) 

g2<-rep(2,n2) 

d1<-cbind(x11,x21,g1) 

d2<-cbind(x12,x22,g2) 

Grp1<-cbind(x11,x21) 

Grp2<-cbind(x12,x22) 

c<-Grp1[,1] 

cc<-Grp1[,2] 

C<-Grp2[,1] 

CC<-Grp2[,2] 

Data<-rbind(d1,d2) 

g<-Data[,3] 

x1<-Data[,1] 

x2<-Data[,2] 

Dt<-data.frame(g,x1,x2) 

fit<-lda(fomula=g~.,data=Dt) 

tabel<-table(actual=Dt$g,predicted=predict(fit,Dt)$class) 

pi1<-0.5 

pi2<-0.5 

D<-log(pi2/pi1)+(lambda1-lambda2) 

a <- 0 
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for(i in 1:length(Grp1[,1])){  

A<-cc[i]*(log(lambda1/lambda2)+theta2-theta1) 

B<-c[i]*log(theta1/theta2) 

w1 <- A+B 

if(w1>=D) { 

a <- a+1 

} 

} 

b <- 0 

for(i in 1:length(Grp1[,1])){  

A<-cc[i]*(log(lambda1/lambda2)+theta2-theta1) 

B<-c[i]*log(theta1/theta2) 

w1 <- A+B 

if(w1<D) { 

b <- b+1 

} 

}  

c <- 0 

for(i in 1:length(Grp2[,1])){  

A<-CC[i]*(log(lambda1/lambda2)+theta2-theta1) 

B<-C[i]*log(theta1/theta2) 

w2 <- A+B 

if(w2>=D) { 

c <- c+1 

}  

} 

d <- 0 

for(i in 1:length(Grp2[,1])){  

A<-CC[i]*(log(lambda1/lambda2)+theta2-theta1) 

B<-C[i]*log(theta1/theta2) 

w2 <- A+B 

if(w2<D) { 

d <- d+1 

}  

} 

tr <- ftable(tabel) 

ErFLD <- (tr[1,2]+tr[2,1])/(n1+n2) 

ErPP <- (b + c)/(n1+n2) 

list(c(ErPP,ErFLD)) 

#END 

} 

 

## Under-Dispersed P-P and FLD 

Underdispersed<-function(n1,n2){ 

set.seed(200) 

lambda1<-1.2 

lambda2<-0.8 

theta1<-0.42 

theta2<-0.31 

xx<-rpois(0.8*n1,lambda1) 

x<-rpois(0.2*n1,lambda1/8) 

x11<-c(x,xx) 

x21<-rpois(n1,theta1) 

XX<-rpois(0.8*n2,lambda2) 

X<-rpois(0.2*n2,lambda2/8) 

x12<-c(XX,X) 

x22<-rpois(n2,theta2) 

g1<-rep(1,n1) 

g2<-rep(2,n2) 

d1<-cbind(x11,x21,g1) 

d2<-cbind(x12,x22,g2) 

Grp1<-cbind(x11,x21) 

Grp2<-cbind(x12,x22) 

c<-Grp1[,1] 

cc<-Grp1[,2] 

C<-Grp2[,1] 

CC<-Grp2[,2] 

Data<-rbind(d1,d2) 

g<-Data[,3] 

x1<-Data[,1] 

x2<-Data[,2] 

Dt<-data.frame(g,x1,x2) 

fit<-lda(fomula=g~.,data=Dt) 

tabel<-table(actual=Dt$g,predicted=predict(fit,Dt)$class) 

pi1<-0.5 

pi2<-0.5 

D<-log(pi2/pi1)+(lambda1-lambda2) 

a <- 0 

for(i in 1:length(Grp1[,1])){  

A<-cc[i]*(log(lambda1/lambda2)+theta2-theta1) 

B<-c[i]*log(theta1/theta2) 

w1 <- A+B 

if(w1<D) { 

a <- a+1 

} 

}  

b <- 0 

for(i in 1:length(Grp1[,1])){  

A<-cc[i]*(log(lambda1/lambda2)+theta2-theta1) 

B<-c[i]*log(theta1/theta2) 

w1 <- A+B 

if(w1>=D) { 

b <- b+1 

} 

} 

c <- 0 

for(i in 1:length(Grp2[,1])){  

A<-CC[i]*(log(lambda1/lambda2)+theta2-theta1) 

B<-C[i]*log(theta1/theta2) 

w2 <- A+B 

if(w2>=D) { 

c <- c+1 

}  

} 

d <- 0 

for(i in 1:length(Grp2[,1])){  

A<-CC[i]*(log(lambda1/lambda2)+theta2-theta1) 

B<-C[i]*log(theta1/theta2) 

w2 <- A+B 

if(w2<D) { 

d <- d+1 

}  

} 

tr <- ftable(tabel) 

ErFLD <- (tr[1,2]+tr[2,1])/(n1+n2) 

ErPP <- (b + c)/(n1+n2) 

list(c(ErPP,ErFLD)) 

#END 

} 

 

## Undispersed P-P and FLD 

Undispersed<-function(n1,n2){ 

set.seed(200) 

lambda1<-1.2 



162 G. C. Mbaeyi & C. J. Nweke / Songklanakarin J. Sci. Technol. 45 (1), 156-164, 2023 

 

lambda2<-0.8 

theta1<-0.42 

theta2<-0.31 

x11<-rpois(n1,lambda1) 

x21<-rpois(n1,theta1) 

x12<-rpois(n2,lambda2) 

x22<-rpois(n2,theta2) 

g1<-rep(1,n1) 

g2<-rep(2,n2) 

d1<-cbind(x11,x21,g1) 

d2<-cbind(x12,x22,g2) 

Grp1<-cbind(x11,x21) 

Grp2<-cbind(x12,x22) 

c<-Grp1[,1] 

cc<-Grp1[,2] 

C<-Grp2[,1] 

CC<-Grp2[,2] 

Data<-rbind(d1,d2) 

g<-Data[,3] 

x1<-Data[,1] 

x2<-Data[,2] 

Dt<-data.frame(g,x1,x2) 

fit<-lda(fomula=g~.,data=Dt) 

tabel<-table(actual=Dt$g,predicted=predict(fit,Dt)$class) 

pi1<-0.5 

pi2<-0.5 

D<-log(pi2/pi1)+(lambda1-lambda2) 

a <- 0 

for(i in 1:length(Grp1[,1])){  

A<-cc[i]*(log(lambda1/lambda2)+theta2-theta1) 

B<-c[i]*log(theta1/theta2) 

w1 <- A+B 

if(w1<D) { 

a <- a+1 

} 

} 

b <- 0 

for(i in 1:length(Grp1[,1])){  

A<-cc[i]*(log(lambda1/lambda2)+theta2-theta1) 

B<-c[i]*log(theta1/theta2) 

w1 <- A+B 

if(w1>=D) { 

b <- b+1 

} 

}  

c <- 0 

for(i in 1:length(Grp2[,1])){  

A<-CC[i]*(log(lambda1/lambda2)+theta2-theta1) 

B<-C[i]*log(theta1/theta2) 

w2 <- A+B 

if(w2>=D) { 

c <- c+1 

}  

} 

d <- 0 

for(i in 1:length(Grp2[,1])){  

A<-CC[i]*(log(lambda1/lambda2)+theta2-theta1) 

B<-C[i]*log(theta1/theta2) 

w2 <- A+B 

if(w2<D) { 

d <- d+1 

}  

} 

tr <- ftable(tabel) 

ErFLD <- (tr[1,2]+tr[2,1])/(n1+n2) 

ErPP <- (b + c)/(n1+n2) 

list(c(ErPP,ErFLD)) 

#END 

} 

 

## Overdispersed P-B and FLD 

Overdispersed<-function(n1,n2){ 

set.seed(200) 

N<-10 

lambda11<-1.2 

lambda22<-0.8 

p11<-0.42 

p22<-0.31 

xx<-rpois(0.8*n1,lambda11) 

x<-rpois(0.2*n1,lambda11*9.5) 

x11<-c(xx,x) 

x21<-rbinom(n1,N,p11) 

XX<-rpois(0.8*n2,lambda22) 

X<-rpois(0.2*n2,lambda22*9.5) 

x12<-c(XX,X) 

x22<-rbinom(n2,N,p22) 

g1<-rep(1,n1) 

g2<-rep(2,n2) 

d1<-cbind(x11,x21,g1) 

d2<-cbind(x12,x22,g2) 

C1<-cbind(x11,x21) 

C2<-cbind(x12,x22) 

c<-C1[,1] 

cc<-C1[,2] 

C<-C2[,1] 

CC<-C2[,2] 

Data<-rbind(d1,d2) 

g<-Data[,3] 

x1<-Data[,1] 

x2<-Data[,2] 

Dt<-data.frame(g,x1,x2) 

fit<-lda(fomula=g~.,data=Dt) 

tabel<-table(actual=Dt$g,predicted=predict(fit,Dt)$class) 

pi1<-0.5 

pi2<-0.5 

lambda1<-mean(x11) 

lambda2<-mean(x12) 

p1<-mean(x11)/mean(x21) 

p2<-mean(x12)/mean(x22) 

D<-log(pi2/pi1)+(lambda1-lambda2) 

a <- 0 

for(i in 1:length(C1[,1])){  

A<-c[i]*log(lambda1/lambda2) 

B<-cc[i]*log(p1/p2) 

w1 <- A+B 

if(w1>=D) { 

a <- a+1 

} 

} 

b <- 0 

for(i in 1:length(C1[,1])){  

A<-c[i]*log(lambda1/lambda2) 

B<-cc[i]*log(p1/p2) 

w1 <- A+B 
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if(w1<D) { 

b <- b+1 

} 

}  

c <- 0 

for(i in 1:length(C2[,1])){  

A<-C[i]*log(lambda1/lambda2) 

B<-CC[i]*log(p1/p2) 

w2 <- A+B 

if(w2>=D) { 

c <- c+1 

}  

} 

d <- 0 

for(i in 1:length(C2[,1])){  

A<-C[i]*log(lambda1/lambda2) 

B<-CC[i]*log(p1/p2) 

w2 <- A+B 

if(w2<D) { 

d <- d+1 

}  

} 

tr <- ftable(tabel) 

ErFLD <- (tr[1,2]+tr[2,1])/(n1+n2) 

ErPB <- (b + c)/(n1+n2) 

list(c(ErPB,ErFLD)) 

#END 

} 

 

## Underdispersed P-B and FLD 

Underdispersed<-function(n1,n2){ 

set.seed(200) 

N<-10 

lambda11<-1.2 

lambda22<-0.8 

p11<-0.42 

p22<-0.31 

xx<-rpois(0.8*n1,lambda11) 

x<-rpois(0.2*n1,lambda11/8) 

x11<-c(xx,x) 

x21<-rbinom(n1,N,p11) 

XX<-rpois(0.8*n2,lambda22) 

X<-rpois(0.2*n2,lambda22/8) 

x12<-c(XX,X) 

x22<-rbinom(n2,N,p22) 

g1<-rep(1,n1) 

g2<-rep(2,n2) 

d1<-cbind(x11,x21,g1) 

d2<-cbind(x12,x22,g2) 

C1<-cbind(x11,x21) 

C2<-cbind(x12,x22) 

c<-C1[,1] 

cc<-C1[,2] 

C<-C2[,1] 

CC<-C2[,2] 

Data<-rbind(d1,d2) 

g<-Data[,3] 

x1<-Data[,1] 

x2<-Data[,2] 

Dt<-data.frame(g,x1,x2) 

fit<-lda(fomula=g~.,data=Dt) 

tabel<-table(actual=Dt$g,predicted=predict(fit,Dt)$class) 

pi1<-0.5 

pi2<-0.5 

lambda1<-mean(x11) 

lambda2<-mean(x12) 

p1<-mean(x11)/mean(x21) 

p2<-mean(x12)/mean(x22) 

D<-log(pi2/pi1)+(lambda1-lambda2) 

a <- 0 

for(i in 1:length(C1[,1])){  

A<-c[i]*log(lambda1/lambda2) 

B<-cc[i]*log(p1/p2) 

w1 <- A+B 

if(w1>=D) { 

a <- a+1 

} 

} 

b <- 0 

for(i in 1:length(C1[,1])){  

A<-c[i]*log(lambda1/lambda2) 

B<-cc[i]*log(p1/p2) 

w1 <- A+B 

if(w1<D) { 

b <- b+1 

} 

}  

c <- 0 

for(i in 1:length(C2[,1])){  

A<-C[i]*log(lambda1/lambda2) 

B<-CC[i]*log(p1/p2) 

w2 <- A+B 

if(w2>=D) { 

c <- c+1 

}  

} 

d <- 0 

for(i in 1:length(C2[,1])){  

A<-C[i]*log(lambda1/lambda2) 

B<-CC[i]*log(p1/p2) 

w2 <- A+B 

if(w2<D) { 

d <- d+1 

}  

} 

tr <- ftable(tabel) 

ErFLD <- (tr[1,2]+tr[2,1])/(n1+n2) 

ErPB <- (b + c)/(n1+n2) 

list(c(ErPB,ErFLD)) 

#END 

} 

 

## Undispersed P-B and FLD 

Undispersed<-function(n1,n2){ 

set.seed(200) 

N<-10 

lambda11<-1.2 

lambda22<-0.8 

p11<-0.42 

p22<-0.31 

x11<-rpois(n1,lambda11) 

x21<-rbinom(n1,N,p11) 

x12<-rpois(n2,lambda22) 

x22<-rbinom(n2,N,p22) 
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g1<-rep(1,n1) 

g2<-rep(2,n2) 

d1<-cbind(x11,x21,g1) 

d2<-cbind(x12,x22,g2) 

C1<-cbind(x11,x21) 

C2<-cbind(x12,x22) 

c<-C1[,1] 

cc<-C1[,2] 

C<-C2[,1] 

CC<-C2[,2] 

Data<-rbind(d1,d2) 

g<-Data[,3] 

x1<-Data[,1] 

x2<-Data[,2] 

Dt<-data.frame(g,x1,x2) 

fit<-lda(fomula=g~.,data=Dt) 

tabel<-table(actual=Dt$g,predicted=predict(fit,Dt)$class) 

pi1<-0.5 

pi2<-0.5 

lambda1<-mean(x11) 

lambda2<-mean(x12) 

p1<-mean(x11)/mean(x21) 

p2<-mean(x12)/mean(x22) 

D<-log(pi2/pi1)+(lambda1-lambda2) 

a <- 0 

for(i in 1:length(C1[,1])){  

A<-cc[i]*log(lambda1/lambda2) 

B<-c[i]*log(p1/p2) 

w1 <- A+B 

if(w1>=D) { 

a <- a+1 

} 

} 

b <- 0 

for(i in 1:length(C1[,1])){  

A<-cc[i]*log(lambda1/lambda2) 

B<-c[i]*log(p1/p2) 

w1 <- A+B 

if(w1<D) { 

b <- b+1 

} 

}  

c <- 0 

for(i in 1:length(C2[,1])){  

A<-CC[i]*log(lambda1/lambda2) 

B<-C[i]*log(p1/p2) 

w2 <- A+B 

if(w2>=D) { 

c <- c+1 

}  

} 

d <- 0 

for(i in 1:length(C2[,1])){  

A<-CC[i]*log(lambda1/lambda2) 

B<-C[i]*log(p1/p2) 

w2 <- A+B 

if(w2<D) { 

d <- d+1 

}  

} 

tr <- ftable(tabel) 

ErFLD <- (tr[1,2]+tr[2,1])/(n1+n2) 

ErPB <- (b + c)/(n1+n2) 

list(c(ErPB,ErFLD)) 

#END 

} 

 

 


