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Abstract 
 

For any positive integer 𝑛 ≥ 2, we give necessary and sufficient conditions of the existence of the Moore-Penrose inverse 

of any square matrix over the ring of integers modulo 𝑛. In particular, the formula for the Moore-Penrose inverse of any 2 × 2 

matrix is also explained if it exists. We also characterize all values of 𝑘 and 𝑛 for which the ring of all 𝑘 × 𝑘 matrices over the ring 

of integers modulo 𝑛 is ∗-regular with respect to the matrix transposition as an involution. It turns out that the ring of 𝑘 × 𝑘 matrices 

over the ring of integers modulo 𝑛 is ∗-regular if and only if 𝑛 is square-free and either 𝑘 = 1 or 𝑘 = 2 and each prime divisor of 𝑛 

must have the form 4𝑚 + 3 for some nonnegative integer 𝑚. 
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1. Introduction  
 

 The Moore-Penrose inverse is a type of a generalized 

inverse defined and developed on the set of matrices over some 

particular rings by E. H. Moore and R. Penrose (Moore, 1920; 

Penrose, 1955). It has been explored extensively over various 

fields such as polynomial rings, integral domains (Bapat, Rao, 

& Prasad, 1990; Rao, 1983) and also been used in other 

perspectives such as the least squares method in statistics (Ben-

Israel & Greville, 2003). Many authors have developed several 

necessary and sufficient conditions for the existence of the 

Moore-Penrose inverses since the discovery. Bapat, Rao and 

Prasad have studied the generalized inverses over the integral 

domains and one of their results has shown that a matrix 𝐴 over 

an integral domain with rank 𝑟 has the Moore-Penrose inverse 

if and only if the sum of squares of all 𝑟 × 𝑟 minors of 𝐴 is an 

invertible element (Bapat et al., 1990). Zhu, Chen, Zhang and 

Patrίcio have studied representations of the Moore-Penrose 

inverse of 2 × 2 matrices over a ∗-regular ring with two terms 

∗-cancellation and presented some formulae of the Moore 

Penrose inverses (Zhu, Chen, Zhang, & Patrίcio, 2014). The 

ring of integers modulo 𝑛, denoted by ℤ𝑛 is a simple ring in the 

literature yet various types of ring structures sit inside this  

small 

 
small but it is the classical one. To study the ring of matrices 

over this type of ring, we need to combine some known facts 

from elementary number theory and linear algebra. All of these 

matters inspire us to study the Moore-Penrose inverse of 𝑘 × 𝑘 

matrices over ℤ𝑛, to extend and simplify the formulae seen in 

the work of Zhu et al. (2014) and also to classify the ∗-
regularity in the ring of 𝑘 × 𝑘 matrices over ℤ𝑛 by using the 

existence property of the Moore-Penrose inverse.  

The focus of this paper is two-fold. Firstly, we give 

necessary and sufficient conditions for the existence of the 

Moore-Penrose inverse in any square matrix over ℤ𝑛. The 

Chinese Remainder Theorem will give reduction of calculation 

to the (reduced) matrix over the ring of integers modulo prime 

powers in the prime factorization of 𝑛. In the case of 2 × 2 

matrix, an explicit formula for any Moore-Penrose invertible 

matrix is presented. Let 𝑝 be a prime number and suppose that 

𝑀 is a 2 × 2 matrix over ℤ𝑝𝑚 with 𝑢 = det(𝑀) and 𝑣 = sum of 

squares of all entries of 𝑀. We prove that the Moore-Penrose 

inverse of 𝑀 exists if and only if 𝑢 is a unit in ℤ𝑝𝑚 and the 

Moore-Penrose inverse of 𝑀 is given by 𝑢−1 adj(𝑀) where 

adj(𝑀) is the adjoint matrix of 𝑀, or else 𝑢 must be zero in ℤ𝑝𝑚 

and 𝑣 is a unit in 𝑍𝑝𝑚 and the Moore-Penrose inverse of 𝑀 is 

given by 𝑣 −1𝑀𝑇, where 𝑀𝑇 is the transpose of 𝑀. By Applying 

the Chinese Remainder Theorem, we can extend the results to 

the general 2 × 2 matrices over ℤ𝑛. We still do not know 

whether similar formulae exist for 𝑘 × 𝑘 matrices where 𝑘 ≥ 3. 

Nevertheless,  the Chinese Remainder Theorem  allows  us  to 
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work on the ring of 𝑘 × 𝑘 matrices over ℤ𝑝𝑚, where 𝑝 is a prime 

number and 𝑚 is a positive integer, as we factorize the modulus 

𝑛 into a product of distinct prime powers.  

Secondly, we characterize all possible values of 𝑘 

and 𝑛 for which the ring of 𝑘 × 𝑘 matrices over ℤ𝑛 is ∗-regular, 

i.e. every matrix has its Moore-Penrose inverse, with respect to 

the involution ∗ defined by the matrix transposition. We prove 

that the ring of 𝑘 × 𝑘 matrices over ℤ𝑛 is ∗-regular if and only 

if 𝑛 is square-free and either 𝑘 = 1 (with no additional 

conditions) or 𝑘 = 2, and all divisors of 𝑛 can be written as the 

form 4𝑚 + 3 for some nonnegative integer 𝑚. The result 

exploits the sum of squares lemma from elementary number 

theory (Koshy, 2007).  

 

2. Preliminaries  
 

Let 𝑅 be an associative ring with the identity 1 ≠ 0. 

An element 𝑎 ∈ 𝑅 is regular (in the sense of von Neumann) if 

there exists an 𝑥 ∈ 𝑅 such that 𝑎𝑥𝑎 = 𝑎. A ring 𝑅 is called 

regular if every element in 𝑅 is regular. An involution ∗ in 𝑅 is 

an anti-isomorphism of degree 2 in 𝑅 i.e., (𝑥∗)∗ = 𝑥, (𝑥 + 𝑦)∗ = 

𝑥∗ + 𝑦∗ and (𝑥𝑦)∗ = 𝑦∗𝑥∗ for all 𝑥, 𝑦 ∈ 𝑅. A ring with involution 

∗ is called a ∗-ring. An element 𝑎 ∈ 𝑅 is ∗- cancellable if 𝑎∗𝑎𝑥 

= 0 implies 𝑎𝑥 = 0 and 𝑦𝑎𝑎∗ = 0 implies ya  0 for any 𝑥, 𝑦 ∈ 

𝑅. A ∗-ring is ∗-cancellable if every element in 𝑅 is ∗-
cancellable. If a ring 𝑅 is regular and ∗-cancellable then it is 

called a ∗-regular ring. A ∗-ring is said to satisfy the 𝑘-term ∗-
cancellation law (𝑆𝐶𝑘) if 𝑎1∗𝑎1 + 𝑎2∗𝑎2 + ⋯ + 𝑎𝑘∗𝑎𝑘 = 0 implies 

𝑎1 = 𝑎2 = ⋯ = 𝑎𝑘 = 0 for any 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑘 ∈ 𝑅. An element 

𝑎 ∈ 𝑅 is Moore-Penrose invertible if there is an element 𝑥 ∈ 𝑅 

satisfying  

 

𝑎𝑥𝑎 = 𝑎     (1) 

 

𝑥𝑎𝑥 = 𝑥     (2) 

 

(𝑎𝑥)∗ = 𝑎𝑥    (3) 

 

(𝑥𝑎)∗ = 𝑥𝑎    (4) 

 
These equations are called the Moore-Penrose equations. If 𝑥 

exists, then it is unique (Penrose, 1955) and it is called the 

Moore-Penrose inverse of 𝑎, denoted by 𝑎 †.  

We recall standard definitions and notations from 

number theory and matrix theory. For any positive integer 𝑛 ≥ 

2, let ℤ𝑛 = {0, 1, 2, …, 𝑛 − 1} denote the ring of integers modulo 

𝑛 with the usual addition and multiplication. Let 𝑀𝑘(ℤ𝑛) 

represent the set of all 𝑘 × 𝑘 matrices over ℤ𝑛. The actual 

involution defined on the ring of matrices over any ring 𝑅 

should be defined by 𝑀∗ = [𝑎∗𝑖𝑗] 𝑡 if 𝑀 = [𝑎𝑖𝑗]. However, we use 

the matrix transpose as an involution in the ring 𝑀𝑘(ℤ𝑛) because 

of the following result.  

 

Theorem 2.1 The only involution on ℤ𝑛 is the identity function.  

 

Proof. Let ∗: ℤ𝑛 → ℤ𝑛 be an involution and 𝑎 = 1∗ . For any 𝑥 

∈ ℤ𝑛\{0}, we have 𝑥∗ = (1 + 1 + ∙∙∙ +1⏟        
𝑥 terms

)∗ =

1∗ + 1∗ + ∙∙∙ +1∗⏟          
𝑥 terms

= 𝑎𝑥.  Since  0∗ = 0, 𝑥∗ = 𝑎𝑥   allfor  𝑥 ∈

 ℤ𝑛.  
This implies 𝑎2 = 𝑎∗ = (1∗)∗ = 1   and hence 𝑎 = 1∗ =

1∗ ⋅ 1∗ = 𝑎2 = 1. Thus  𝑥∗ = 𝑥 for all  𝑥 ∈ ℤ𝑛. 

 

3. Moore-Penrose Inverses of Matrices over ℤ𝑛  
 

In this section, we give necessary and sufficient 

conditions for the existence of Moore-Penrose inverses and 

provide the algorithm to find the Moore-Penrose inverse in 

𝑀𝑘(ℤ𝑛). For 𝑘 = 1 and 𝑘 = 2, we illustrate an explicit formula 

for the Moore-Penrose inverse of 𝑀 for any 𝑛 ≥ 2. We note that 

the Moore-Penrose inverses of 1 × 1 matrices over ℤ𝑛 are 

studied extensively in the field of number theory (Apostol & 

Tóth, 2015; Ehrlich, 1968). We recall some definition and 

theorems for completeness. An integer 𝑎 is called regular 

modulo 𝑛 if there is an integer 𝑥 satisfying 𝑎2𝑥 ≡ 𝑎 (mod 𝑛). 

The following result comes from (Apostol & Tóth, 2015) with 

a slight modification for our use.  

 

Theorem 3.1 Let 𝑎 be any integer. Then the following 

statements are equivalent:  

(i) 𝑎 is regular modulo 𝑛,  

(ii) gcd(𝑎, 𝑛) = gcd(𝑎2, 𝑛),  

(iii) gcd(𝑎, 𝑛) = gcd(𝑎𝑘, 𝑛) for all 𝑘 ≥ 2.  

 

Proof. Let 𝑎 be any integer.  

(i)  (ii) Suppose 𝑎 is regular modulo 𝑛. Then there 

is an 𝑥 ∈ ℤ𝑛 such that 𝑎2 𝑥 ≡ 𝑎(mod 𝑛). That is, 𝑎2𝑥 = 𝑎 + 𝑛𝑦 

for some 𝑦 ∈ ℤ. Assume that gcd(𝑎, 𝑛) = 𝑑 and gcd(𝑎2, 𝑛) = 𝑒. 
Since gcd(𝑎, 𝑛) = 𝑑, 𝑑|𝑎 and 𝑑|𝑛. Thus 𝑑|𝑎2 so 𝑑|𝑒. Since gcd(𝑎2 

, 𝑛) = 𝑒, 𝑒|𝑎2 and 𝑒|𝑛. Thus 𝑒|(𝑎2𝑥 − 𝑛𝑦), i.e., 𝑒|𝑎. Hence 𝑒|𝑑. 

Since 𝑑 and 𝑒 are non-negative integers, 𝑑 = 𝑒. Therefore, 

gcd(𝑎, 𝑛) = gcd(𝑎2, 𝑛).  

(ii)  (iii) Suppose that gcd(𝑎, 𝑛) = gcd(𝑎2, 𝑛) = 𝑑. 

Then gcd (
𝑎

𝑑
,
𝑛

𝑑
) = 1 = gcd (

𝑎2

𝑑
,
𝑛

𝑑
) . Since gcd (

𝑎

𝑑
,
𝑛

𝑑
) = 1 ,   

we have gcd (
𝑎

𝑑
⋅ 𝑎,

𝑛

𝑑
) = gcd (𝑎,

𝑛

𝑑
) . Hence gcd (𝑎,

𝑛

𝑑
) = 1  . 

We will proceed by induction on 𝑘. For 𝑘 = 2 , this is obvious 

by the assumption. Let  𝑘 ≥ 2   and suppose that gcd(𝑎, 𝑛) =

gcd(𝑎𝑘 , 𝑛) = 𝑑 . Then gcd (
𝑎

𝑑
,
𝑛

𝑑
) = gcd (

𝑎𝑘

𝑑
,
𝑛

𝑑
) = 1 . Since 

gcd (𝑎,
𝑛

𝑑
) = 1  gcd (

𝑎𝑘

𝑑
,
𝑛

𝑑
) = 1, gcd (

𝑎𝑘

𝑑
⋅ 𝑎,

𝑛

𝑑
) = and

 gcd (𝑎,
𝑛

𝑑
) = 1 . Thus gcd(𝑎𝑘+1, 𝑛) =  𝑑 = gcd(𝑎, 𝑛) . This 

 gcd(𝑎𝑘 , 𝑛) = gcd(𝑎, 𝑛)tproves tha  for all 𝑘 ≥ 2.  

(iii)  (i) Suppose that gcd(𝑎, 𝑛) = gcd(𝑎𝑘 , 𝑛) for all 

𝑘 ≥ 2. Then gcd(𝑎, 𝑛) = gcd(𝑎3, 𝑛). Thus gcd(𝑎, 𝑛) = 𝑎3𝑥 + 𝑛𝑦 

for some 𝑥, 𝑦 ∈ ℤ. Choose 𝑏 =
𝑎2𝑥

gcd(𝑎,𝑛)
 , then 𝑎2𝑏 = 

𝑎4𝑥

gcd(𝑎,𝑛)
=

𝑎3𝑥 ⋅
𝑎

gcd(𝑎,𝑛)
= (gcd(𝑎, 𝑛) − 𝑛𝑦) ⋅

𝑎

gcd(𝑎,𝑛)
≡  𝑎 (mod 𝑛). 

Thus 𝑎 is regular modulo 𝑛. ∎  

In our context, 𝑎 is regular in ℤ𝑛 if and only if 𝑎 is a 

regular number modulo 𝑛 where 𝑎 ∈ {0, 1, … , 𝑛 − 1}. In this 

case, the Moore-Penrose equations can be reduced to equations 

(1) and (2).  

 

Theorem 3.2 Let 𝑎 be any integer. Then 𝑎 † exists in ℤ𝑛 if and 

only if 𝑎 is regular modulo 𝑛. If 𝑎 † exists, then 𝑎† =
𝑎2𝑥

gcd(𝑎,𝑛)
 (mod 𝑛), where 𝑥 is an integer satisfying the equation 

gcd(𝑎, 𝑛) = 𝑎3𝑥 + 𝑛𝑦 for some integer 𝑦.  
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Proof. Let 𝑎 be any integer.  

(  ) Suppose that 𝑎 † exists in ℤ𝑛. Then there is an element 𝑏 ∈ ℤ𝑛 such that (1) holds. Thus 𝑎 is regular modulo 𝑛.  

(  ) Suppose that 𝑎 is regular modulo 𝑛. Then there is an integer 𝑥 such that 𝑎2𝑥 ≡ 𝑎 (mod 𝑛). From the proof of 

Theorem 3.1, choose an integer 𝑏 ∈ ℤ𝑛 such that 𝑏 ≡
𝑎2𝑥

gcd(𝑎,𝑛)
 (mod 𝑛) where 𝑥 satisfies gcd(𝑎, 𝑛) = 𝑎3𝑥 + 𝑛𝑦 for some 𝑦 ∈ ℤ. Then 

𝑎2𝑏 ≡  𝑎 (mod 𝑛) as seen in Theorem 3.1. We also have that 𝑏2𝑎 ≡ 
𝑎2𝑥

gcd(𝑎,𝑛)
⋅ 𝑎3𝑥 ≡  

𝑎2𝑥

[gcd(𝑎,𝑛)]2
⋅ (gcd(𝑎, 𝑛) − 𝑛𝑦) ≡

𝑎2𝑥

gcd(𝑎,𝑛)
≡

𝑏 (mod 𝑛). By the uniqueness of 𝑎† , we conclude that 𝑎† = 𝑏.∎  

Next, suppose that 𝑘 ≥ 2. We will start with some auxiliary results.  

 

Lemma 3.3 Let 𝑀 ∈ 𝑀𝑘(ℤ𝑝𝑛), where 𝑛 ≥ 2. If det(𝑀) is a zero divisor of ℤ𝑝𝑛, then 𝑀† does not exist.  

 

Proof. Suppose 𝑀† exists and det(𝑀) is a zero divisor of ℤ𝑝𝑛. Then det(𝑀) = 𝑝𝑞 in ℤ𝑝𝑛 for some 𝑞 ∈ {1,2, … , 𝑝𝑛−1 − 1}. From 

(2), we have, det(𝑀† ) = 𝑝𝑞(det(𝑀† ))2 = 𝑝𝑞1 where 𝑞1 ≡ 𝑞(det(𝑀† ))2 (mod 𝑝𝑛 ). By induction on 𝑚, we have det(𝑀†) = 𝑝2
𝑚−1𝑞𝑚 

for some 𝑞𝑚 ∈ ℤ  and for all 𝑚 ∈ ℕ. This implies det(𝑀†) = 0 in ℤ𝑝𝑛. From (2.1), we have det(𝑀) = 0 in ℤ𝑝𝑛, a contradiction. ∎  

 

Lemma 3.4 For any 𝑛 ≥ 2, suppose that 𝑀 = 𝑝𝑁 for some nonzero 𝑁 ∈ 𝑀𝑘(ℤ𝑝𝑛). Then 𝑀† does not exist.  

 

Proof. Suppose 𝑀† exists. From (3), 𝑀† = 𝑝(𝑀†𝑀𝑀†) = 𝑝𝑁1 where 𝑁1 ∈ 𝑀𝑘(ℤ𝑝𝑛). By induction, we have 𝑀† = 𝑝2
𝑚−1𝑁𝑚 

where 𝑁𝑚 ∈ 𝑀𝑘(ℤ𝑝𝑛)  for all 𝑚 ∈ ℕ . Hence 𝑀† = 0  in 𝑀𝑘(ℤ𝑝𝑛) . This implies  𝑀 = (𝑀†)† = 0  in ℤ𝑝𝑛 , a contradiction.  

Therefore, 𝑀† does not exist. ∎  

 

Lemma 3.5 Let 𝑀 ∈ 𝑀𝑘(ℤ𝑝𝑛). Suppose 𝑀† exists and det(𝑀) = 0 in ℤ𝑝𝑛. Then det(𝑀†) = 0 in ℤ𝑝𝑛. 
 

Proof. Let 𝑀 ∈ 𝑀𝑘(ℤ𝑝𝑛). Suppose 𝑀† exists and det(𝑀) = 0 in ℤ𝑝𝑛 . From (2), we have det(𝑀†) =  det(𝑀†𝑀𝑀†) = det(𝑀†) 

det(𝑀)det(𝑀†) = 0 in ℤ𝑝𝑛.∎ 
 

Theorem 3.6 Suppose 𝑀 = [
𝑎 𝑐
𝑏 𝑑

] ∈ 𝑀2(ℤ𝑝) is nonzero. Then 𝑀† exists if and only if either det(𝑀) ≡ 0 (mod 𝑝) or det(𝑀) ≡

0 (mod 𝑝) and 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 is a unit in ℤ𝑝. If 𝑀† exists, then 𝑀† = {
(𝑎2 + 𝑏2 + 𝑐2 + 𝑑2)−1𝑀𝑇  if   det(𝑀) ≡ 0 (mod 𝑝)

(𝑎𝑑 − 𝑏𝑐)−1adj(𝑀)               if   det(𝑀) ≡ 0 (mod 𝑝)
 

 

Proof. Let 𝑀 = [
𝑎 𝑐
𝑏 𝑑

] ∈ 𝑀2(ℤ𝑝)  be a nonzero matrix in ℤ𝑝 . If det(𝑀) ≡ 0 (mod 𝑝), then 𝑀−1  exists. Thus 𝑀† = 𝑀−1 =

(𝑎𝑑 − 𝑏𝑐)−1adj(𝑀). Suppose det(𝑀) ≡ 0 (mod 𝑝). By Theorem 13 appearing in (Bapat et al., 1990) 𝑀† exists if and only if 𝑎2 +
𝑏2 + 𝑐2 + 𝑑2 is a unit in ℤ𝑝. In case 𝑀† exists, let 𝑢 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 and 𝑁 = 𝑢−1𝑀𝑇. Then 𝑀 and 𝑁 satisfy the Moore-

Penrose equations by a direct computation. Therefore, 𝑀† = 𝑢−1𝑀𝑇 = (𝑎2 + 𝑏2 + 𝑐2 + 𝑑2)−1𝑀𝑇. 

 

Lemma 3.7 Let 𝑎 a be any integer. For any positive integer 𝑛, gcd(𝑎, 𝑝) = 1 if and only if gcd(𝑎, 𝑝𝑛) = 1. 
 

Proof. Let 𝑎 be an integer.  

() Suppose gcd(𝑎, 𝑝) = 1 . We will prove that gcd(𝑎, 𝑝𝑛) = 1 by induction on 𝑛 . For 𝑛 = 1, it is obvious. Next, 

suppose that gcd(𝑎, 𝑝𝑛) = 1 for any 𝑛 ∈ ℕ. Then there are integers 𝑤, 𝑥, 𝑦, 𝑧 such that 𝑎𝑥 + 𝑝𝑦 = 1 and 𝑎𝑤 + 𝑝𝑛𝑧 = 1. Thus 1 = 

(𝑎𝑥 + 𝑝𝑦)(𝑎𝑤 + 𝑝𝑛𝑧) =  (𝑎2𝑤𝑥 + 𝑎𝑝𝑛𝑥𝑧 + 𝑎𝑝𝑤𝑦 + 𝑝𝑛+1𝑦𝑧). This implies that gcd(𝑎, 𝑝𝑛+1) = 1. Therefore, gcd(𝑎, 𝑝𝑛) = 1 

for all positive integers 𝑛. 

() Suppose gcd(𝑎, 𝑝𝑛) = 1 . Then there are integers 𝑥  and 𝑦  such that 𝑎𝑥 + 𝑝𝑛y = 1 . Thus 𝑎𝑥 + 𝑝(𝑝𝑛−1)𝑦 = 1 . 

Therefore, gcd(𝑎, 𝑝) = 1.∎ 

 

Theorem 3.8 Suppose 𝑀 = [
𝑎 𝑐
𝑏 𝑑

] ∈ 𝑀2(ℤ𝑝𝑛) is nonzero and det(𝑀) = 0 in ℤ𝑝𝑛. Then 𝑀† exists if and only 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 

is a unit in ℤ𝑝𝑛. 

 

Proof. (  ) Suppose 𝑀† exists in ℤ𝑝𝑛. Then 𝑀† also exists in ℤ𝑝. By Theorem 3.6, 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 is a unit in ℤ𝑝 and is also 

a unit in ℤ𝑝𝑛 by Lemma 3.7.  

(  ) Suppose 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 is a unit in ℤ𝑝𝑛 and let 𝑢 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2. Then 𝑀† = 𝑢−1𝑀𝑇 by direct computation.  

 

Theorem 3.9. Let 𝑀 = [
𝑎 𝑐
𝑏 𝑑

] ∈ 𝑀2(ℤ𝑝𝑛). Then 𝑀† exists in 𝑀2(ℤ𝑝𝑛) if and only if either one of the following holds: 

(i) 𝑀 = 0 in 𝑀2(ℤ𝑝𝑛), or 

(ii) det(𝑀) is a unit in ℤ𝑝𝑛, or 

(iii) det(𝑀) = 0 in ℤ𝑝𝑛 and 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 is a unit in ℤ𝑝𝑛. 
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Moreover, 𝑀† = {

0                                               if  𝑀 = 0,                                                 
(𝑎𝑑 − 𝑏𝑐)−1adj(𝑀)              if  det(𝑀) is a unit in ℤ𝑝𝑛                       

(𝑎2 + 𝑏2 + 𝑐2 + 𝑑2)−1𝑀𝑇   if  𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 is a unit in ℤ𝑝𝑛.

 

 

Proof. Let 𝑀 = [
𝑎 𝑐
𝑏 𝑑

] ∈ 𝑀2(ℤ𝑝𝑛). 

( ) Suppose 𝑀† exists in 𝑀2(ℤ𝑝𝑛). We consider 2 cases. 

Case 1: 𝑀 = 0 in 𝑀2(ℤ𝑝𝑛). Then  𝑀† = 0 in 𝑀2(ℤ𝑝𝑛). 

Case 2: 𝑀 ≠ 0 in 𝑀2(ℤ𝑝𝑛). Since det(𝑀) can be either a unit, a zero divisor, or a zero element, we consider 3 subcases. 

Case 2.1: det(𝑀) is a unit in ℤ𝑝𝑛. Then 𝑀† = (𝑎𝑑 − 𝑏𝑐)−1adj(𝑀). 

Case 2.2: det(𝑀) is a zero divisor in ℤ𝑝𝑛. Then 𝑀† does not exist by Theorem 3.3. 

Case 2.3: det(𝑀) = 0  in ℤ𝑝𝑛 . Then 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 is a unit in ℤ𝑝𝑛  by Theorem 3.8. and 𝑀† =

(𝑎2 + 𝑏2 + 𝑐2 + 𝑑2)−1𝑀𝑇. 

(  ) The converse is clear. 

Theorem 3.9 cannot be extended further to 3 × 3 matrices over ℤ𝑝𝑛 for 𝑛 ≥ 2, using the concept of rank and sum of 

squares of minors explained in (Bapat et al., 1990). The following matrix over ℤ9 gives a counterexample. 

 

Example 3.10 Let 𝐴 = [
1 0 0
1 3 0
1 1 3

] ∈ 𝑀3(ℤ9) . Since the largest size of nonvanishing minor of 𝐴 is 2, rank(𝐴) = 2 . A part of 

Theorem 13 in Bapat et al. (1990) states that “a matrix 𝐴 of rank 𝑟 has a Moore-Penrose inverse if and only if the sum of squares 

of all 𝑟 × 𝑟 minors of 𝐴 is invertible over an integral domain 𝑅”. We follow this theorem by computing the sum of squares of all 

2 × 2 minors of 𝐴 which gives ∑ 𝑀𝑖𝑗
2 (𝐴)

𝑖𝑗
≡ 5 (mod 9), where 𝑀𝑖𝑗(𝐴) denotes the minor of 𝐴 obtained by deleting the 𝑖𝑡ℎ row 

and the 𝑗𝑡ℎ column of 𝐴. We know that 5 is a unit in ℤ9. However, 𝐴 is not Moore-Penrose invertible.  

Example 3.10 shows that the Moore-Penrose inverse of a matrix over ℤ𝑛 does not only rely on the sum of squares of its 

minors. More investigation is needed for matrices of size larger than 2. However, the following result holds true for square matrices 

of any size. 

Let 𝑛 = 𝑝1
𝑎1𝑝2

𝑎2⋯𝑝𝑚
𝑎𝑚, where 𝑝1, 𝑝2, … , 𝑝𝑚 are distinct primes and 𝑎1, 𝑎2, … , 𝑎𝑚 are positive integers. 

 

Theorem 3.11 Let 𝑀 ∈ 𝑀𝑘(ℤ𝑛). Then 𝑀† exists in 𝑀𝑘(ℤ𝑛) if and only if 𝑀†exists in 𝑀𝑘(ℤ𝑝𝑖𝑎𝑖) for all 𝑖 = 1,2,… ,𝑚. 

 

Proof. Let 𝑀 ∈ 𝑀𝑘(ℤ𝑛). 
(⇒) Suppose 𝑀†exists in 𝑀𝑘(ℤ𝑛). The Moore-Penrose equations (1) - (4) in modulo 𝑛 can be reduced to equations in 

modulo 𝑝𝑖
𝑎𝑖 for every 𝑖 = 1,2, … ,𝑚. Hence 𝑀†exists in 𝑀𝑘(ℤ𝑝𝑖𝑎𝑖) for every 𝑖 = 1,2, … ,𝑚. 

(⇐) Let 𝑀 = [𝑎𝑖𝑗] ∈ 𝑀𝑘(ℤ𝑛). Suppose 𝑀† exists in 𝑀𝑘(ℤ𝑝𝑖𝑎𝑖), say 𝑀𝑖
†, for every 𝑖 = 1,2,… ,𝑚. Let 𝑀𝑖

† = [𝑥𝛼𝛽(𝑖)] ∈

𝑀𝑘(ℤ𝑝
𝑖

𝑎𝑖) for each 𝑖 = 1,2,… ,𝑚. By the Chinese Remainder Theorem, there are 𝑦𝛼𝛽(𝑖) ∈ ℤ𝑛 congruent to 𝑥𝛼𝛽(𝑖) modulo 𝑝𝑖
𝑎𝑖 for 

every 𝑖 = 1,2,… ,𝑚. Let 𝑁 = [𝑦𝛼𝛽(𝑖)]. Then 𝑀 and 𝑁 satisfy the Moore-Penrose equations (1)-(4) in  𝑀𝑘(ℤ𝑛). Therefore 𝑀† =

𝑁. 

 

Algorithm 

Notation: 𝑀
𝑝
𝑖

𝑎𝑖  stands for a matrix 𝑀 in 𝑀𝑘(ℤ𝑛) all of whose entries are considered in ℤ𝑝𝑖𝑎𝑖 . 

Input:  

Step 1. Write 𝑛 = 𝑝1
𝑎1𝑝2

𝑎2⋯𝑝𝑚
𝑎𝑚, where all 𝑝𝑖 are distinct primes and all 𝑎𝑖 are positive integers. 

Step 2. 𝑀 ∈ 𝑀𝑘(ℤ𝑛). 
Output: 𝑀† ∈ 𝑀𝑘(ℤ𝑛) if it exists. 

Step 1. Construct 𝑀 ≡ 𝑀
𝑝
𝑖

𝑎𝑖  for every 𝑖 = 1,2, … ,𝑚. 

Step 2. Compute 𝑀
𝑝
𝑖

𝑎𝑖

† ∈ 𝑀𝑘(ℤ𝑝𝑖𝑎𝑖). 

• If 𝑀
𝑝
𝑖

𝑎𝑖

†
 does not exist for some 𝑖 then 𝑀† does not exist in 𝑀𝑘(ℤ𝑛). 

• If 𝑀
𝑝
𝑖

𝑎𝑖

†
 exists for every 𝑖 = 1,2, … ,𝑚 then 𝑀

𝑝
𝑖

𝑎𝑖

† = [𝑥𝛼𝛽(𝑖)] for each 𝑀
𝑝
𝑖

𝑎𝑖 . 

Step 3. Compute 𝑀† = [𝑦𝛼𝛽], where 𝑦𝛼𝛽 ≡ 𝑥𝛼𝛽(𝑖) (mod 𝑝𝑖
𝑎𝑖) for all 𝑖 = 1,2,… ,𝑚 by using the Chinese Remainder 

Theorem. 
 

Example 3.12 Let 𝑀 = [
16 6
14 19

] ∈ 𝑀2(ℤ20). 
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Step 1. Write 𝑛 = 22 ⋅ 5. Compute 𝑀4 = [
0 2
2 3

] and 𝑀5 = [
1 1
4 4

] 

Step 2. We have 𝑀4
† = [

0 2
2 3

] and 𝑀5
† = [

4 1
4 1

]. 

Step 3. Compute 𝑀† = [
𝑥 𝑧
𝑦 𝑤],  where  

𝑥 ≡ 0(mod 4)
𝑥 ≡ 4(mod 5)

𝑧 ≡ 2(mod 4)
𝑧 ≡ 1(mod 5)

 
 
 

𝑦 ≡ 2(mod 4)

𝑦 ≡ 4(mod 5)

 
    

𝑤 ≡ 3(mod 4)

𝑤 ≡ 1(mod 5)

 

By the Chinese Remainder Theorem, we have 𝑥 = 4, 𝑦 = 14, 𝑧 = 6,𝑤 = 11 in ℤ20. Thus 𝑀† = [
4 6
14 11

] in  𝑀2(ℤ20). 

 

4.  -Regularity of Matrices over the Ring of Integers Modulo 𝒏 . 
 

In this section, we characterize all values of 𝑘 and 𝑛 for which the ring of all 𝑘 × 𝑘 matrices over ℤ𝑛 is ∗-regular. Firstly, 

we focus on 𝑘 = 1. We note that 𝑀1(ℤ𝑛) is ∗-regular if and only if ℤ𝑛 is regular. It is well-known that ℤ𝑛 is regular if and only if 

𝑛 is square-free (Apostol & Tóth, 2015; Ehrlich, 1968). Thus, we have the following result. 

 

Theorem 4.1. 𝑀1(ℤ𝑛) is ∗ -regular if and only if 𝑛 is square-free. Moreover, if 𝑀 = [𝑎] ∈ 𝑀1(ℤ𝑛) then 𝑀† = [𝑎†] where 𝑎† ≡
𝑎2𝑥

gcd(𝑎,𝑛)
 (mod 𝑛) and 𝑥 is chosen from the equation gcd(𝑎, 𝑛) = 𝑎3𝑥 + 𝑛𝑦 for some 𝑦 ∈ ℤ. 

 

Proof. This is a consequence of Theorem 3.2. ∎ 

 

Next, suppose that 𝑘 ≥ 2 . The following theorems (Theorem 4.2 - 4.5) are cited from Hartwig and Patrício (2012), 

Kaplansky (1972), Koliha and Patrício (2002) and Lemma 4.6 is cited from Koshy (2007). 

 

Theorem 4.2 𝑅 satisfies 𝑆𝐶1 if and only if 𝑅 is ∗ -cancellable. 

 

Theorem 4.3 𝑀𝑘(𝑅) satisfies 𝑆𝐶1 if and only if 𝑅 satisfies 𝑆𝐶𝑘. 

 

Theorem 4.4 𝑀𝑘(𝑅) is regular if and only if 𝑅 is regular. 

 

Theorem 4.5 𝑀𝑘(𝑅) is ∗ -regular if and only if 𝑅 is regular and satisfies 𝑆𝐶𝑘. 

 

Lemma 4.6 If 𝑝 is an odd prime, then there are integers 𝑥 and 𝑦 such that 1 + 𝑥2 + 𝑦2 ≡ 0 (mod 𝑝), where 0 ≤ 𝑥, 𝑦 <
𝑝

2
. 

Next, we focus on the ring 𝑀𝑘(ℤ𝑛). 
 

Theorem 4.7 For any 𝑛 ≥ 2, ℤ𝑛 does not satisfy 𝑆𝐶𝑘 for all 𝑘 ≥ 3. 

 

Proof. Suppose 𝑛 ≥ 2 and 𝑘 ≥ 3. Then 𝑝|𝑛 for some prime 𝑝, so 𝑛 = 𝑝𝑙  for some 𝑙 ∈ ℕ. Note that 0 < 𝑙 < 𝑛. If 𝑝 = 2 , then 

02 + 02 +⋯+ 02⏟          
𝑘−2 terms

+ 12 + 12 = 2, and hence 02 + 02 +⋯+ 02⏟          
𝑘−2 terms

+ 𝑙2 + 𝑙2 = 2𝑙2 = 𝑙𝑛. Thus, ℤ2 does not satisfy 𝑆𝐶𝑘 for all 𝑘 ≥

3. Suppose 𝑝 ≥ 3. By Lemma 4.6, there are integers 𝑥 and 𝑦 such that 0 ≤ 𝑥, 𝑦 <
𝑝

2
 and 02 + 02 +⋯+ 02⏟          

𝑘−3 terms

+ 12 + 𝑥2 + 𝑦2 = 𝑝𝑚 

for some 𝑚, so 02 + 02 +⋯+ 02⏟          
𝑘−3 terms

+ 𝑙2 + (𝑙𝑥)2 + (𝑙𝑦)2 = 𝑙𝑚𝑛 ≡ 0 (mod 𝑛). Thus, ℤ𝑛 does not satisfy 𝑆𝐶𝑘 for all 𝑘 ≥ 3. ∎ 

 

Lemma 4.8 Let 𝑝 be a prime number. Then ℤ𝑝 satisfies 𝑆𝐶2 if and only if 𝑝 ≡ 3 (mod 4). 

 

Proof. (⇒) Suppose ℤ𝑝 satisfies 𝑆𝐶2. If 𝑝 = 2, then 12 + 12 = 0 in ℤ2. This implies 1 = 0 in ℤ2, a contradiction. Thus, 𝑝 must be 

an odd prime. Suppose 𝑝 ≡ 1 (mod 4) . Then −1 is a quadratic residue modulo 𝑝 . Thus, there is some 𝑥 ∈ ℕ such that 𝑥2 ≡
−1 (mod 𝑝). Note that 𝑥 ≢ 0 (mod 𝑝). Therefore, we have 𝑥2 + 12 ≡ 0 (mod 𝑝). This implies ℤ𝑝 does not satisfy 𝑆𝐶2. Hence 𝑝 ≡

3 (mod 4). 

(⇐) Let 𝑝 be a prime such that 𝑝 ≡ 3 (mod 4) . Suppose 𝑎𝑎∗ + 𝑏𝑏∗ = 0 in ℤ𝑝 . Then 𝑎2 + 𝑏2 ≡ 0 (mod 𝑝) . Assume that 𝑎 ≢

0 (mod 𝑝) . Then there is an 𝑥 ∈ ℤ  such that 𝑎𝑥 ≡ 1 (mod 𝑝) . Thus (𝑏𝑥)2 = 𝑏2𝑥2 ≡ −(𝑎𝑥)2 ≡ −1 (mod 𝑝) . But −1  is a 

quadratic nonresidue modulo 𝑝 , a contradiction. Thus, 𝑎 ≡ 0 (mod 𝑝)  and hence 𝑏 ≡ 0 (mod 𝑝) . This shows that ℤ𝑝 

satisfies 𝑆𝐶2.∎ 
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Theorem 4.9 ℤ𝑛 satisfies 𝑆𝐶2 if and only if 𝑛 = 𝑝1𝑝2⋯𝑝𝑘 where 𝑝𝑖 are distinct primes of the form 4𝑚 + 3 for some integer m.

   

Proof. (⇒) Suppose ℤ𝑛  satisfies 𝑆𝐶2 . Let 𝑛 = 𝑎2𝑏  where 𝑎, 𝑏 ∈ ℕ and 𝑏  is square-free. Suppose 𝑎 > 1  .Then (𝑎𝑏)2 + 02 =
(𝑎2𝑏)𝑏 = 𝑛𝑏 ≡ 0 (mod 𝑛). This implies ℤ𝑛 does not satisfy 𝑆𝐶2. Thus, 𝑎 = 1 and 𝑛 is square-free. Let 𝑛 = 𝑝1𝑝2⋯𝑝𝑘 where 𝑝𝑖 
are distinct primes. Suppose 𝑝𝑖 ≡ 2  or 𝑝𝑖 ≡ 1 (mod 4) for some 𝑖 . Then 𝑝𝑖 = 𝑥

2 + 𝑦2  for some 𝑥, 𝑦  such that  1 ≤ 𝑥, 𝑦 < 𝑝𝑖 . 

Thus   (
𝑛𝑥

𝑝𝑖
)
2
+ (

𝑛𝑦

𝑝𝑖
)
2
=
𝑛2

𝑝𝑖
2 (𝑥

2 + 𝑦2) =
𝑛2

𝑝𝑖
≡ 0 (mod 𝑛) . Note that 1 ≤

𝑛𝑥

𝑝𝑖
,
𝑛𝑦

𝑝𝑖
< 𝑛 . This implies ℤ𝑛  does not satisfy 𝑆𝐶2 . 

Therefore, 𝑛 = 𝑝1𝑝2⋯𝑝𝑘 where 𝑝𝑖 are distinct primes of the form 4𝑚 + 3. 

(⇐) Suppose 𝑛 = 𝑝1𝑝2⋯𝑝𝑘 where 𝑝𝑖 are distinct primes of the form 4𝑚 + 3. Let 𝑎, 𝑏 be such that 𝑎2 + 𝑏2 = 0 in ℤ𝑛. Then 𝑎2 +
𝑏2 = 0 in ℤ𝑝𝑖  for all 𝑖. This implies 𝑎 = 𝑏 = 0 in ℤ𝑝𝑖  for all 𝑖. It follows that 𝑝𝑖|𝑎 and 𝑝𝑖|𝑏 for all 𝑖. Thus, [𝑝1, 𝑝2, … , 𝑝𝑘]|𝑎 and 

[𝑝1, 𝑝2, … , 𝑝𝑘]|𝑏 for all i . But [𝑝1, 𝑝2, … , 𝑝𝑘] = 𝑝1𝑝2⋯𝑝𝑘 = 𝑛. Hence 𝑎 = 𝑏 = 0 in ℤ𝑛. Therefore, ℤ𝑛 satisfies 𝑆𝐶2.∎ 

 

Theorem 4.10 𝑀2(ℤ𝑛)  is ∗ -regular if and only if 𝑛 = 𝑝1𝑝2⋯𝑝𝑘  where 𝑝𝑖  are distinct primes of the form 4𝑚 + 3 for all 𝑖 =
1,2,… , 𝑘. 

 

Proof. 𝑀2(ℤ𝑛)is ∗-regular if and only if ℤ𝑛 is regular and satisfies 𝑆𝐶2 if and only if 𝑛 = 𝑝1𝑝2⋯𝑝𝑘 where 𝑝𝑖 are distinct primes 

of the form 4𝑚 + 3 for all 𝑖 = 1,2, … , 𝑘.∎ 

Finally, we get a characterization for ∗-regularity in 𝑀𝑘(ℤ𝑛). 
 

Theorem 4.11 𝑀𝑘(ℤ𝑛) is ∗ -regular if and only if 𝑛 is square-free and either one of the following statements holds: 

 (i)  𝑘 = 1, or 

 (ii) 𝑘 = 2 and each prime divisor of 𝑛 can be written as the form 4𝑚 + 3 for some nonnegative integer 𝑚. 

 

5. Conclusions 
  

In this paper, we have characterized all possible 

values of 𝑘 and 𝑛 for which the ring of 𝑘 × 𝑘 matrices over ℤ𝑛 

is ∗-regular. It turns out that a ring of 𝑘 × 𝑘 matrices over ℤ𝑛 is 

∗-regular if and only if 𝑛 is square-free and either 𝑘 = 1 (with 

no additional conditions) or 𝑘 = 2, and all divisors of 𝑛 can be 

written as the form 4𝑚 + 3 for some nonnegative integer 𝑚. In 

the case of 2 × 2 matrices, the Moore-Penrose inverse formula 

is presented in Theorem 3.9 and 3.10. However, more 

investigation is needed for the case 𝑘 ≥ 3. 
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