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Abstract 
 

This study presents a method for modelling manufacturing processes to predict key performance indicators (KPIs) such 

as cycle time using Bluetooth Low Energy (BLE) data. We consider BLE applications to be similar to Radio-Frequency 

IDentification (RFID) scenarios, with a single BLE scanner indicating a single working area. This work considers the case when 

Received Signal Strength Indicator (RSSI) data are unavailable in some areas, such as, when products are in temporary storage 

areas away from the production areas. We solve this problem with a Duration and Interval Hidden Markov Model (DI-HMM), in 

which time spent in production areas is represented as duration and those with absence data as intervals. To parameterize the DI-

HMM model, we propose a two-stage machine-learning problem based on a classification tree and a Hidden Semi Markov Model 

(HSMM). To investigate the proposed model, the RSSI observation sequences are generated using MATLAB Bluetooth Toolbox 

and real-world experimentation. The runtime scenario compares estimated and original states, and the average accuracy of 100 test 

sequences is around 95%. In the offline forecast scenario, an estimated DI-HMM parameter is used to forecast 200 sequences, then 

compared with sequences with a vector distance with a similarity score of 0.4717. 

 

Keywords: manufacturing process, bluetooth low energy, duration and interval hidden markov model, classification tree,  

                      hidden semi Markov model 

 

 

1. Introduction  
 

 A factory is a combination of various buildings that 

host several manufacturing processes to produce final products 

to be stored and sent to customers. Generally, the factory area 

has two sections based on their operations: production areas 

and warehouse areas. The production areas are where a 

sequence of work is performed to manufacture final products, 

and the warehouse areas store these products until customers 

demand them. There are usually small storage areas within the 

production area to temporarily keep intermediate parts among 

the work areas. Product tracking data plays a crucial role in 

providing visibility of productivity in manufacturing areas, 

such as the amount of work-in-process, storage capacity, and 

machine status. 

 
Production flow refers to how raw materials move in 

sequential order from one work area to another to get final 

products. Each work area will complete its specific task and 

move the finished parts to the next work area. If the next work 

area is occupied with some unfinished work, then the parts will 

be shifted to a temporary storage area. Several manufacturing 

KPIs are defined based on production flow information, 

including cycle time, machine utilization, and production 

throughput. The behaviour of production flow can be 

understood by tracking changes from raw material to parts and 

then products in production areas using barcode and RFID 

systems. 

A Radio-Frequency IDentification (RFID) device is 

the most widely used device for tracking objects in malls, 

hospitals, factories, and other buildings (Zhu, Mukhopadhyay, 

& Kurata, 2012). An RFID system consists of two parts: an 

RFID reader and tags. RFID tags are attached to moving 

objects, while RFID readers are placed in specific locations to 

detect tag entries. The tags communicate via radio signal with 

readers as they pass by.   The main drawback of RFID is that it 



380 K. Agrawal & S. Vorapojpisut / Songklanakarin J. Sci. Technol. 45 (3), 379-385, 2023 

 

can only determine entry time, whereas knowing when 

products enter and leave a production flow is essential for 

predicting their temporal behaviour. Bluetooth Low-Energy 

(BLE) devices are widely used in indoor detection applications 

(Subedi & Pyun, 2020). In comparison to other solutions, BLE 

technology has several characteristics that satisfy the 

requirements of production tracking, such as a suitable range 

(10 m), a reasonable price tag (<$30), and a long battery life 

(>1 year). BLE object detection consists of two types of 

devices: BLE tags that broadcast their identities and BLE 

scanners installed at particular locations that look for nearby 

BLE tags. Proximity detection uses Received Signal Strength 

Indicator (RSSI) signals to identify nearby BLE devices and 

collect data such as RSSI, product ID, and timestamps for 

analyzing entry and exit times (Narzt et al., 2016).  

Numerous studies have proposed modelling of the 

temporal behaviours of production flow. Queuing theory is the 

most popular and traditional approach for estimating the 

temporal behaviours of production flow, such as cycle time and 

throughput time. The basic definition of queueing is that the 

production task arrives, waits for service, and then exits after 

finishing the process. However, these works (Gao et al., 2019) 

usually consider the timing for each station separately. An 

RFID-enabled graphical deduction model (rfid-GDM) (Ding, 

Jiang, Sun, & Wang, 2017) was proposed to capture the time-

sensitive and other aspects of RFID-tagged products in the 

production flow. This approach allows the decomposition of 

events from fixed and moveable RFID readers into a sequence 

of states. But the rfid-GDM concept does not aggregate RFID 

data from multiple production sequences into statistical 

parameters. This limits its application in the manufacturing 

process with respective operations. The unsupervised 

measurement (Nakai, Maekawa, & Namioka, 2016) studied 

wearable sensor data arranged as segments or “motifs” and 

figures out cycle time based on the motif's repetition intervals. 

However, the unsupervised measurement considers only the 

cycle time of one station, while neglecting the temporal 

characteristics of the whole production line. The use of BLE 

and HMM (Subedi & Pyun, 2020) was applied to define 

trajectories, and another work that combined BLE and HMM 

(Arslan, Cruz, & Ginhac, 2019) explained semantic trajectories 

to better understand worker mobility and improve safety. But 

these works ignore scenarios with the absence of BLE data due 

to the limited range of BLE communication. To overcome 

limitations related to the BLE detection range, we consider the 

HMM mathematical framework since the model can represent 

both the statistical behaviour of RSSI values as observations 

and the sequence of production flow as state transitions. 

The main objective of this paper is to develop a 

mathematical model for predicting temporal metrics of the 

production flow using the HMM concept. We consider BLE 

applications similar to RFID scenarios where a single BLE 

scanner is installed in a single work area. Three core ideas make 

our study different from others:  

1) Our scenario is motivated by the installation of 

barcode/RFID in production lines, so the BLE 

signal may be detected by one scanner of the 

occupied area, many (close-by areas), or none 

(no close area). 

2) The conversion of RSSI values into the 

proximity of areas is to be aggregated as a 

stochastic model of sequence along the 

production line. 

3) We use a two-stage learning problem to 

parameterize the model. 

The paper is structured as follows. Section 2 reviews 

the concepts and technologies used. Section 3 defines the 

tracking problem as the DI-HMM model and the algorithm 

used to solve it. Section 4 contains the numerical results. The 

conclusion of the paper is discussed in Section 5. 

 

2. Concepts and Technologies 
 

2.1 BLE based radio frequency identification  

      (RFID) technology 
 

RFID has two components: reader and tag. There are 

two types of RFID tags: passive RFID and active RFID (Zhu, 

Mukhopadhyay, & Kurata, 2012). Mostly, passive RFID is 

used in industries. RFID tags obtain power from the reader, 

therefore the reader can receive a signal from that tag only when 

that tag reaches the reader. The RFID reader tends to be bulky 

in size and covers a short distance. BLE is a related technology 

that uses a similar concept to RFID but with a battery-powered 

tag. We use an RFID-like scenario where a single BLE scanner 

identifies a particular work area. 

BLE is a low-power and short-range wireless 

technology that can be utilized for indoor object detection. 

RSSI reflects the distance between tags and scanning devices 

in dBm (Subedi & Pyun, 2020). Theoretically, distance and 

RSSI have an inverse relationship, but the RSSI fluctuates even 

when the location is the same. In our paper, we used the Wemos 

D1 R32 which is an ESP32 board with a PCB antenna. The 

initial study employed two boards, one as a BLE tag 

(broadcasting mode) and the other as a BLE scanner. By 

positioning the BLE tag at various distances and gathering 

RSSI data. Figure 1 shows the relationship between distance 

and RSSI. 

 
 

Figure 1. RSSI vs distance of BLE devices 

 

Figure 1 depicts the RSSI variation by distance. 

Three fundamental issues with RSSI-based systems are signal 

strength attenuation, signal interference, and multipath 

propagation (Subedi & Pyun, 2020). Trilateration and 

fingerprinting (Jondhale et al., 2022)  are  popular  approaches 
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that use RSSI values to detect the position of objects. Both 

approaches assume there are three or more BLE scanners that 

read RSSI values from the same BLE tag to find the object in 

2D coordinates. However, BLE localization methods are 

ineffective in our study because they require at least two or 

more BLE scanners to find the coordinates and match the 

closest suitable area. Additionally, this will not work when no 

BLE data is available. That is why we propose a HMM-based 

method to compensate for such issues with the information of 

states in the production sequence. 

 

2.2. Hidden Markov model (HMM) 
 

HMM is a double-layer stochastic process with some 

specific hidden states based on the Markov process that relies 

upon observation states (Rabiner, 1989). Based on the HMM 

concept, the production sequence and transition in the 

manufacturing area can be determined from an observation 

sequence. HMM consists of 5-elements: State (𝑆), Initial State 

probability (𝜋), Transition Matrix (𝐴), Observation State (𝑂), 

and Emission Matrix (𝐵). The following three conditions are 

required for the realization of HMM: 

1) The Markov assumption: The HMM's next 

state depends just on the current state. 

2) Independence assumption: The emission 

probability of the current observation depends 

only on the current state, consequently it is 

independent from other states and other 

observations. 

3) The Stationarity assumption: State transition 

probabilities do not consider an actual time at 

which the transformation of the state occurs 

Manufacturing is a complex process where products 

go through different work areas and operations, including 

picking, assembly, and forwarding. Cycle time is a critical KPI 

in the manufacturing industry because it describes temporal 

characteristics of work areas that can be used in the evaluation 

and forecasting of production efficiency. In the production 

process, production time is a fundamental aspect of the 

transition. To resolve this problem, the Hidden Semi Markov 

Model (HSMM) introduces the variable duration (𝐷) that relies 

on each state and controls the transition matrix (𝐴)  (Sun, 

Wang, Moran & Rowe, 2020). Model accuracy increases if the 

system depends on time, in comparison with the plain HMM. 

HSMM has two main properties that make it different from 

HMM. First, the self-transition probability is assumed zero, i.e., 

no return to the same state is allowed, and a single state depends 

upon the sojourn duration (Sun, Wang, Moran, & Rowe, 2020). 

 

3. Problem Statement  
 

This study used a BLE-based system to track and 

collect product movement information to estimate the total 

cycle time of products. A BLE-based system uses BLE tags 

attached to the products, and BLE scanners that have been 

strategically placed in work areas to detect BLE tags. However, 

the coverage area of the BLE scanner in the work area is 

limited. As a result, when the product is between two work 

areas, no BLE scanner may be able to receive precise RSSI 

data, and the product location becomes unknown. Collecting 

product ID and RSSI data is the first step in understanding the 

production flow and its temporal metrics. Then, using the RSSI 

data sequence, the product's proximity location and production 

flow are estimated using the DI-HMM forward-backward 

algorithm. The other parameters, such as the overall cycle time 

and the cycle time for each area, are predicted using the 

learning algorithm. 

Our previous study (Vorapojpisut & Agrawal, 2022) 

formulated the product tracking problem as an HSMM model 

∆𝐻𝑆𝑀𝑀 =  {𝐴, 𝐵, π, 𝑝}  that defines its state transition 

probability to depend on the sojourn time, which is the time for 

workers or machines to complete their tasks. HSMM ∆𝐻𝑆𝑀𝑀 

consist of four mains of parameters (Sun, Wang, Moran & 

Rowe, 2020).  

 

∆𝐻𝑆𝑀𝑀 =  {𝐴, 𝐵, π, 𝑝}                                             (1) 
 

where 𝐴  represents the transition matrix with duration 

probability 𝑝  for each state, 𝐵  signifies the emission matrix, 

and π is the initial state probability.  

The HSMM model can represent duration time in its 

context, but cannot capture the transition period between work 

areas. The Duration and Interval Hidden Markov Model (DI-

HMM) ∆𝐷𝐼−𝐻𝑀𝑀 = {𝐴, 𝐵, 𝜋, 𝑝, 𝐿} defines the periods without 

observations as state intervals (Narimatsu & Kasai, 2015). In 

HSMM, the next state 𝑆𝑗  starts immediately after ending the 

present state  𝑆𝑖, but, the next state 𝑆𝑗 in DI-HMM starts after a 

state interval that occurs after ending its previous state 𝑆𝑖.  A 

state interval 𝐼𝑖,𝑗  between two consecutive states where 𝑖, 𝑗 ∊

{1,2, … , 𝑁} is expressed by interval length probability 𝑃(𝐿𝑖,𝑗) 

assumed to be the Gaussian distributed. A time length of 

observation of the DI-HMM is ∑(𝑑𝑖 + 𝐼𝑖,𝑗), where 𝑑𝑖 ∊ 𝐷 and  

𝐼𝑖,𝑖+1stands for the time difference between ending-time of 𝑆𝑖 

and starting-time of 𝑆𝑗.  

 

 
 

Figure 2. Sequence of DI-HMM 

 

The following assumptions are made to reflect 

manufacturing process characteristics. 

1) Each work area with a BLE scanner represents 

a state 𝑆𝑖, where 𝑖 =  1,2,3, . . 𝑁 and 𝑁 denotes 

the number of work areas. In this case, 𝑀 

observed (RSSI) signals are generated based on 

the states, therefore 𝑀 = 𝑁. 

2) The transition matrix 𝐴 is fixed to reflect that 

the manufacturing process of similar products 

is sequential and identical. Since all product 

manufacturing begins in the 𝑆1 work area, the 

initial state probability for the 𝑆1 working area 

is 1 and 0 for the others. 

3) The emission probabilities 𝐵 are assumed to be 

fixed, but may be updated periodically based on 

the collected RSSI data (Sun, Wang, Moran & 
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Rowe, 2020), as follows: 

 

𝑏𝑖(𝑂𝑡:𝑡+𝑑−1) = ∏ 𝑏𝑖(𝑂𝑘)𝑡+𝑑−1
𝑘=𝑡                                       (2) 

 

The sequential likelihood of the HSMM denoted 

as  𝑃(𝑂|∆𝐻𝑆𝑀𝑀)   can be determined through a forward-

backward procedure. The forward-backward has two sub-

divided variables: forward variable and backward variable. The 

HSMM forward variable (Sun, Wang, Moran & Rowe, 2020) 

for estimating likelihood is defined as follows: 

 

𝛼𝑡(𝑖) = 𝑃( 𝑂1:𝑡,  𝑆𝑖  𝑒𝑛𝑑𝑠 𝑎𝑡 𝑡 | ∆𝐻𝑆𝑀𝑀)  =

 ∑ 𝛼𝑡−𝑑
∗ (𝑖)𝑚𝑖𝑛 (𝑡,𝐷)

𝑑=1  𝑝𝑖(𝑑)𝑏𝑖(𝑂𝑡−𝑑+1:𝑡)                 (3) 

 

𝛼𝑡
∗(𝑖) = 𝑃(𝑂1:𝑡 , 𝑆𝑖  𝑏𝑒𝑔𝑖𝑛𝑠 𝑎𝑡 𝑡 + 1 |∆𝐻𝑆𝑀𝑀) =

∑ 𝛼𝑡(𝑖)𝑁
𝑖=1  𝑎𝑗,𝑖                                               (4) 

𝑡 =  1, … , 𝑇      𝑖 =  1, … , 𝑁           

 

where, 𝛼𝑡(𝑖)  is the joint probability of obtaining the partial 

observation sequence up to time t and ending in the state 𝑖 at the 

time 𝑡 , given the model ∆𝐻𝑆𝑀𝑀 ; and 𝛼𝑡
∗(𝑖)  is  the joint 

probability of obtaining the observation sequence up to 

time t; and entry to state 𝑖 begins at the next time 𝑡 + 1, given 

the model ∆𝐻𝑆𝑀𝑀 . The proximity likelihood of a location is 

calculated using the formula 𝑆𝑡̂ = 𝑎𝑟𝑔 max
1<𝑖<𝑁

 𝛼𝑡(𝑖) . The 

HSMM backward variable (Sun, Wang, Moran & Rowe, 2020) 

is defined as follows:  

 

𝛽𝑡(𝑖) = 𝑃(𝑂𝑡:𝑇| 𝑆𝑖  𝑏𝑒𝑔𝑖𝑛𝑠 𝑎𝑡 𝑡 , ∆𝐻𝑆𝑀𝑀) =

 ∑ 𝛽𝑡+𝑑
∗ (𝑖)(𝑇−𝑡,𝐷) 

𝑑=1  𝑝𝑖(𝑑)𝑏𝑖(𝑂𝑡:𝑡+𝑑−1)                    (5) 

 

𝛽𝑡
∗(𝑖) = 𝑃(𝑂𝑡:𝑇 |𝑆𝑖  𝑒𝑛𝑑𝑠 𝑎𝑡 𝑡 − 1, ∆𝐻𝑆𝑀𝑀) =

 ∑ 𝑎𝑖,𝑗
𝑁
𝑗=1  𝛽𝑡(𝑗)                                                       (6) 

𝑡 =  𝑇, … ,1      𝑖 =  1, … , 𝑁                                                                                  

 

where 𝛽𝑡(𝑖)  is the probability of the partial observation 

sequence from epoch t to the end, given that the systems start 

in state i at the time t and with a model ∆𝐻𝑆𝑀𝑀, and 𝛽𝑡
∗(𝑖) is the 

probability of the partial observation sequence from time t to 

the end, given that the system leaves the state i at the previous 

time 𝑡 − 1  and with a model ∆𝐻𝑆𝑀𝑀 . Then, the duration 

probability 𝑝̂𝑖(𝑑) matrix is re-estimated based on the forward 

and backward variables as (Sun, Wang, Moran & Rowe, 2020): 

 

𝑝̂𝑖(𝑑)  =  
∑ 𝛼𝑡−1

∗ (𝑖) p𝑖(𝑑) 𝑏𝑖(𝑂𝑡:𝑡+𝑑−1)𝛽𝑡+𝑑
∗ (𝑖) 𝑇−𝑑+1

𝑡=1

∑ ∑ 𝛼𝑡−1
∗ (𝑖) p𝑖(𝑑) 𝑏𝑖(𝑂𝑡:𝑡+𝑑−1)𝛽𝑡+𝑑

∗ (𝑖) 𝑇−𝑑+1
𝑡=1

𝐷
𝑑=1

 (7) 

 

The work area contains BLE scanners that collect 

RSSI data and determine the location of BLE tags based on 

strong RSSI values, while the movement and storage of 

products outside work areas will lead to weak and noisy RSSI 

values such that product location becomes unknown. To solve 

the problem of missing RSSI data for some tags, we propose a 

classification tree (Kang & Zadorozhny, 2016) to identify 

inside/outside scenarios based on BLE data, as shown in Figure 

3. 

 
 

Figure 3. Classification tree to detect inside/outside scenarios 

 
Input: 𝑂1:𝑇

𝑧  =  {𝑜1
𝑧, 𝑜2

𝑧, . . . 𝑜𝑇
𝑧}  where 𝑍 is number of 

training sequences 

             𝑐𝑡𝑟𝑒𝑒 Classification tree model 

Training phase: 

1. 𝑝𝑠𝑢𝑚  =  0 

2. 𝐼𝑠𝑢𝑚  =  0 

3. for z = 1 to 𝑍 

4.      Assign the HSMM parameters  {𝜋, 𝐴, 𝐵}  
5.       z == 1 assign 𝑝 as uniformly distributed    

      probability 

6.       for 𝑡 =1 to 𝑇 

7.              𝑙𝑎𝑏𝑒𝑙  =  𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑐𝑡𝑟𝑒𝑒 , 𝑜𝑡)   
8.              if 𝑙𝑎𝑏𝑒𝑙 ==  {𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑎𝑟𝑒𝑎} 

9.                    Calculate 𝛼𝑡  , 𝛼𝑡
∗, 𝛽𝑡 , and 𝛽𝑡

∗  using     

                   (3), (4), (5), and (6) 

10.              else 

11.                    Calculate interval 𝐼  

12.            end 

13.      end 

14.      Update parameter 𝑝̂ using (7) 

15.      Calculate 𝐿 using (8) 

16.       𝑝𝑠𝑢𝑚  =  𝑝𝑠𝑢𝑚  + 𝑝̂  

17.        𝑝𝑎𝑣𝑔   =
 𝑝𝑠𝑢𝑚

𝑧⁄  

18.       𝑝 =  𝑝𝑎𝑣𝑔    

19. end 
Output:  𝑝̂ and 𝐿 

 
Algorithm 1. Re-estimate the duration and interval 

probabilities using DI-HMM 

 Algorithm 1 is to re-estimate the duration and 

interval probabilities using the classification tree and HSMM. 

When RSSI data are classified as a positive case (work area), 

the training algorithm of the HSMM model ∆𝐻𝑆𝑀𝑀 =
 {𝐴, 𝐵, π, 𝑝}  will proceed normally. When RSSI data are 

classified as a negative case (outside the work area), the training 

algorithm of HSMM model ∆𝐻𝑆𝑀𝑀 =  {𝐴, 𝐵, π, 𝑝}  is paused, 

and the counting of the timing steps will be used for the 

modeling of interval probability 𝐿𝑖,𝑗.  

 

𝐿𝑖,𝑗 = 𝑝(𝐼𝑖,𝑗) =
1

𝜎√2𝜋
𝑒

−(𝐼𝑖,𝑗−𝜇)2

2𝜎2                                      (8) 

 

where 𝑖 =  1,2, . 𝑁 − 1 and  𝑗 =  1,2, . 𝑁. 
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4. Numerical Results 
 

To evaluate our proposed algorithm, we conducted 

three numerical studies using data from simulated and real-

world scenarios. A simulated experiment generates the RSSI 

sequence using the left-to-right HMM concept and the 

MATLAB Bluetooth toolbox. Real-world data are collected in 

a physical setup using four BLE scanners to represent the work 

areas and one storage area without a BLE scanner. 

 

4.1 Simulated experiment   
 

This study simulated end-to-end BLE transmission 

scenarios in the presence of a path loss model, RF impairments, 

and additive white Gaussian noise (AWGN). The MATLAB 

Bluetooth toolbox version R2022b was used to generate 

simulated data by providing the 2-D coordinates of the BLE 

scanners and moving positions for BLE tags. Algorithm 2 

illustrates how to estimate the RSSI based on the scanner 

position with moving tags.  

 

Input: Environment = Industrial,  𝑃𝑡  =  0 𝑑𝐵 Tx 

power 

            𝑆𝑐𝑎𝑛𝑛𝑒𝑟 𝑝𝑜𝑠 
= [𝑥1 𝑦1; 𝑥2 𝑦3; . . . ; 𝑥𝑁  𝑦𝑁] , 

where 𝑁 is number of scanners 

            𝑇𝑎𝑔𝑀𝑜𝑡𝑖𝑜𝑛 =  [𝑥1 𝑦1; 𝑥2 𝑦3; … ; 𝑥𝐿 𝑦𝐿], 
where 𝐿 is total path steps 

             𝑇𝑎𝑔𝑎𝑡 𝑠𝑐𝑎𝑛𝑛𝑒𝑟 =  [𝑝𝑜𝑠1; 𝑝𝑜𝑠2; . . . ; 𝑝𝑜𝑠𝑁] ,  
            𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = [𝐼12𝑚𝑖𝑛 𝐼12𝑚𝑎𝑥;  𝐼23𝑚𝑖𝑛 𝐼23𝑚𝑎𝑥; … ; 

𝐼(𝑁−1) 𝑁𝑚𝑖𝑛
 𝐼(𝑁−1) 𝑁𝑚𝑎𝑥

] 

             𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  [𝑑1𝑚𝑖𝑛
 𝑑1𝑚𝑎𝑥

; 𝑑2𝑚𝑖𝑛
 𝑑2𝑚𝑎𝑥

; … ; 

𝑑𝑁𝑚𝑖𝑛
 𝑑𝑁𝑚𝑎𝑥

]     

Sequence generation: 

1. for 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 =  1 to 𝐿  
2.        Tag position = 𝑇𝑎𝑔𝑀𝑜𝑡𝑖𝑜𝑛(𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦, : ) 

3.         Nearest scanner = 𝑓𝑖𝑛𝑑 (𝑇𝑎𝑔𝑎𝑡 𝑠𝑐𝑎𝑛𝑛𝑒𝑟 = 

= 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦) 

4.         if isempty (Nearest scanner) == 1 

5.               t = randomly select 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 based on  

the two Nearest scanners 

6.               𝑆𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  = ‘Storage area’ 

7.         else 

8.               t = Select a random 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 based on 

the Nearest scanner 

9.               𝑆𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  = Nearest scanner 

10.         end 

11.                 𝑆𝑡𝑖𝑚𝑒  (1: t) = 𝑆𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  

12.                𝑆  =  [𝑆 , 𝑆𝑡𝑖𝑚𝑒]  
13.         for 𝑠𝑐𝑎𝑛 =  1 to 𝑁 

14.              Scanner position =  𝑆𝑐𝑎𝑛𝑛𝑒𝑟 𝑝𝑜𝑠 
 

  (𝑠𝑐𝑎𝑛, : ) 

15.              Distance real = distance between the  

            Tag position and Scanner position            

16.              for  𝑘 = 1 to t 

17.                      Distance = Distance real ±  

                     randomly generated minor error 

18.                      𝑃𝐿𝑑𝐵   =   Calculate path loss with  

                     End-to-End Bluetooth BR/EDR                  

                                     Simulation Procedure. 

19.                      𝑅𝑆𝑆𝐼 = 𝑃𝑡 − 𝑃𝐿𝑑𝐵 

20.                       𝑜(𝑠𝑐𝑎𝑛, 𝑘)  =    𝑅𝑆𝑆𝐼 

21.                end 

22.                𝑂  =  [𝑂 , 𝑜] 
23.         end 

24. end 

Output: Hidden state 𝑆 and RSSI observations 𝑂   

           Algorithm 2 Generates RSSI using MATLAB 

Bluetooth toolbox 

 
 

Figure 4. BLE scanner position and BLE tag trajectory. 

 

500 different sequences were generated based on the 

setup of the BLE scanners and BLE tag trajectory shown in 

Figure 4 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  [3,8;  5,6;  4,7;  2,4;  1,1]  and 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  [3,15;  5,10;  5,8; 10,15] were used for algorithm 

2. Each simulated sequence contains two types of information: 

observed (RSSI) signals and state sequences, as illustrated in 

Figure 5. 
 

 
 

Figure 5. Example of simulated sequences (states and RSSI) 

 

  We conducted the runtime estimation and the 

offline forecast studies. The runtime estimation compares the 

state sequences and estimated DI-HMM sequence. In the 

offline forecast scenario, the re-estimated DI-HMM is used to 

forecast sequences, then average the forecast and state 

sequences using the sample count.  
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4.1.1 Runtime estimation scenario 
 

In runtime estimation, 100 observed sequences were 

randomly selected to re-estimate the duration and interval 

probabilities using Algorithm 1. Then, the DI-HMM state 

sequences were estimated from RSSI values using the re-

estimated duration and interval probabilities. Figure 6 shows 

the simulated state sequence as ground truth and the estimated 

DI-HMM state sequence. 

 

 
Figure 6. Comparison of the original and estimated states 

 

DI-HMM model accuracy is evaluated using the 

confusion matrix, shown in Figure 7. The confusion matrix was 

used to evaluate performance, and classification 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 / 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ∗  100. 

The accuracy of this model was (521 + 561 +
519 + 273 + 41 + 4569)/6759  = 0.9593  or approximately 

95%. 

 
 

Figure 7. Confusion matrix 

 

4.1.2 Offline forecast scenario 
 

In the offline forecast, different state sequences are 

sampled to re-estimate the duration and interval probabilities 

with Algorithm 1. Then, the model is used to forecast another 

200 state sequences. To compare the similarity of sequences, 

we encoded the simulated/forecast state sequence using run-

length encoding (RLE). RLE is a simple algorithm for lossless 

data compression that works when a simulated/forecast state 

sequence contains the same value repeatedly. For example, if 

RLE's input is “AAABBCCCC,” its output is “3A2B4C”.  

After that, the vector distance is used to compare the 

multidimensional similarity of the forecast and simulated RLE 

vectors. The relationship between the training sample size and 

its vector distance is displayed in Figure 8. The average vector 

distance for the entire system was approximately 0.4717, which 

is close to zero and demonstrates that the estimated duration 

and interval are close to the original sequences used for the 

training of duration and interval parameters. 

 
 

Figure 8. Vector distance for simulated and forecast sequences 
 

4.2 Real-world experiment  
 

In a real-world scenario, different stations carry out 

various tasks to collect RSSI data from BLE devices. The 

experiment consists of three components: Wemos R32 boards 

as BLE tags and scanners, Wi-Fi access points, and the Firebase 

database. Figure 2 demonstrates the BLE scanner's coverage 

area and the relationship between distance and RSSI. Four BLE 

scanners are arranged in a U shape over a 12×5m area, as 

shown in Figure 9.  

Every 5 seconds as one timing unit, each BLE 

scanner scans, stores, and sends data to Firebase's real-time 

database. Each BLE tag was moved from one work location to 

the next in a predetermined order with 20 datasets collected 

from the area shown in Figure 9.  

 

 
 

Figure 9. Scanner location in the experiment 
 

Table 1 compares the average state duration and 

interval values between the data generated by our DI-HMM 

model and the data collected. This proves that our proposed 

method can achieve reasonable accuracy with realistic and 

limited datasets. 

 

5. Conclusions  
 

The main benefit of our approach is that it can 

uncover temporal behaviour and extract potential correlations 

in the DI-HMM that earlier research was unable to do, using 
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RSSI data from the production flow. With the help of a two-

stage learning problem, it is possible to estimate the probability 

distributions 𝑝̂𝑖(𝑑)  and 𝐿𝑖,𝑗  from RSSI data collected from 

experiments. After that, the DI-HMM model can be used to 

compute the crucial KPI metrics, i.e., cycle time and throughput 

time. The estimated cycle time of the products in the 

manufacturing area is the sum of the state’s durations and 

interval times, represented as ∑ (𝑑𝑞 + 𝐼𝑞−1,𝑞)𝑁
𝑞=1 . Throughput 

time is the ratio of time taken to complete production to a unit 

of the product, so the estimated cycle time of the product is 

equal to the throughput time. Work-in-Process defines the 

current state of the product in the manufacturing area. This 

study will benefit manufacturers by assisting them in estimating 

productivity on production flow. Moreover, we can forecast 

future target product behaviour based on the most recent 

forecasts. 
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