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Abstract 
 

We obtain the solutions of Einstein’s field equations for an anisotropic fluid in a static spherically symmetric metric with 

off-diagonal elements. We also study the pioneer anomaly with the help of the obtained solutions. First, we derive analytical 

solutions to study sudden change in gravity in the radial and tangential directions of a non-homogeneous gravitational system by 

considering Π as a constant. Then we find other solutions by considering Π as a function of r in the space of gravitating object. We 

extend our solutions in the numerical limits to verify the unusual behavior of gravity at larger distances for the inhomogeneous 

system. We show a sudden increase in radial pressure for 𝑟𝜖[0, 20] as well as the tangential pressure for 𝜃𝜖[0, 𝜋], which may be 

treated as a factor of pioneer anomaly. We obtain the anomalous acceleration 2.493 × 10−11𝑚/𝑠2 at a distance of 20 AU from the 

Sun, which has better accuracy than other theoretical calculations when it is compared to the observed value. We also derive an 

expression for cosmological constant in terms of 𝑟. We establish that the cosmological constant is a function of 𝑟, which seems to 

be variable but its variability diminishes for large values of 𝑟. The results of this study are interesting and quite new. The selected 

spherically symmetric metric with off-diagonal elements provides a modified method to observe the phenomena of general 

relativity. 
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1. Introduction  
 

 In 1915 Einstein proposed the general theory of 

relativity. Einstein expressed that the gravity is a result of the 

distortion in spacetime caused by massive objects (Einstein, 

1915a). Later, Einstein presented the field equations to relate 

the geometry of spacetime with the distribution of matter inside 

it (Einstein, 1915b). Einstein explained that the gravity is more 

than just a force contradicting Newton’s concept of gravity. He 

determined the gravity as the distortion of spacetime due to the 

presence of matter or energy, which can be described using a 

metric tensor. The Newtonian gravitation is a special case of 

the metric tensor in Einstein’s theory. 

 

 
The metric tensor with diagonal elements only is well 

defined and achieves the Newtonian gravitation. Newtonian 

gravitation presumes homogeneous gravity for the entire 

universe. Therefore, Newtonian gravitation is insufficient for 

describing phenomena in which the gravity is inhomogeneous, 

e.g. the phenomenon of unusual high-speed arms of spiral 

galaxy or the pioneer anomaly in which a sudden increase in 

gravity at a larger distance is observed; these cannot be 

explained by using the gravity tensor with diagonal elements 

only (Murad, 2011). A spiral galaxy is a flattened rotating 

galaxy with pinwheel-like arms of interstellar material and 

young stars, winding out from its central bulge. M100, M101 

(Kuntz, 2003), NGC 1232, NGC 1365, NGC 2903 (Bresolin, 

2005) etc. are examples of spiral arm galaxies. 

The pioneer anomaly is the unusual behaviour of 

acceleration of Pioneer 10 and Pioneer 11 spacecrafts after 

travelling long distances in the space, which was observed in 

1980 and investigated in 1994 (Nieto & Anderson, 2005; Nieto 

& Turyshev, 2004; Turyshev et al., 2006; Turyshev, Nieto, & 



562 U. Ujala et al. / Songklanakarin J. Sci. Technol. 45 (5), 561-569, 2023 

 

Anderson, 2005). The pioneer anomaly was deceleration of the Pioneer spacecrafts (Varieschi, 2012), which in fact is in violation 

of Newton’s inverse square law (Turyshev, 2010). Initially it was believed that the cause of pioneer anomaly was radiative 

anisotropy (Rievers & Lammerzahl, 2011). It was also discussed that pioneer anomaly is a gravitational phenomenon (Iorio, 2010) 

and the metric, which is not Minkowski flat, such as the FLRW metric, can explain the pioneer anomaly in a straightforward 

manner (Iorio, 2010). However, advanced studies undermine the role of gravitation in pioneer anomaly (Fienga et al., 2009; Iorio, 

2007; Iorio & Giudice, 2006; Standish, 2008; Tangen, 2007) but others did not rule out the role of gravity in the pioneer anomaly 

(AlMosallami, 2012; Anderson & Nieto, 2009; Anderson et al., 2002; Iorio, 2015; Jaekel & Reynaud, 2008; Page, Wallin & Dixon, 

2009; Siutsou & Tomilchik, 2009).  We selected a spherically symmetric off-diagonal metric for studying the gravitational cause 

of pioneer anomaly. 

It is not only the pioneer anomaly but also there are many other geophysics situations where a metric tensor with off-

diagonal elements is needed (Jefimenko, 2006; Murad, Lavrentiev, Dyatlov, Fadeev, & Kostova, 2000). With sufficient evidence 

of the need for off-diagonal metrics, studies have attempted to define the off-diagonal metric tensor and tried to prove its validity. 

Hobson, Efstethiou, and Lasenby (2007) proposed a geodesic equation in spherically symmetric metric tensor with off-

diagonal elements as follows. 

 

ds2 = g00(r)c2dt2-g11(r)dr2-2cg01(r)dtdr-l(r)r2(dθ2 + dϕ2sin2θ).    (1) 

Later, Friedmann and Stave (2019) modified equation (1) and suggested a new geodesic equation with off-diagonal 

metric of the following form 

 

ds2 = (1-u)dt2-2g01dtdr-
(g01

2 -1)

1-u
dr2-r2dθ2-r2sin2θdϕ2.     (2) 

They also showed that their metric passed the classical tests of general relativity. With the above studies available to us, 

we must consider a spherically symmetric metric with off-diagonal elements in case of inconsistently varying gravity due to any 

gravitating object. 

Moreover, in our universe, we notice the atmospheric density and hence atmospheric pressure within the perihelion and 

aphelion of a gravitating object possessing orbital motion. Studies have shown variations in density, pressure and hence in 

gravitation in different directions of gravitating objects as well as in the atmosphere (Deng, Qidley, & Wang, 2008). The shifting 

of the Mercury perihelion forward (Einstein, 1915b; Price & Rush, 1979) and expansion of the universe (Bahcall, 2015; Dil, 2016; 

Kirshner, 2021) show the varying nature of density, pressure, and gravity of the gravitating objects. These theories guided us to 

study an anisotropic fluid with off-diagonal metric. 

The study of non-homogeneous gravity is an interesting topic in the general theory of relativity and cosmology, in the 

contemporary field of astrophysics. The mathematical physics researchers (Maurya, Maharaj, Kumar & Prasad, 2019) have shown 

a lot of interest in this field. Recent advances (Maurya, Banerjee & Hansraj, 2018) in this topic motivated us also to study the 

inhomogeneous gravitational system. 

In this work we took our defined static spherically symmetric metric with off-diagonal elements for anisotropic fluid. In 

the first part, we derive analytical solutions of Einstein field equations in the off-diagonal metric defined by us. In the second part, 

we calculate numerical solutions by limiting the parameter values. In the third part we discuss the pioneer anomaly and calculate 

the anomalous acceleration using the results obtained in the second part. In the fourth part we discuss the cosmological constant.  

 

2. Anisotropic Solution 
 

The Einstein field equations with cosmological constant can be given by (Blau, 2011) 

 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈 = 𝑘𝑇𝜇𝜈 ,        (3) 

where, 𝑅𝜇𝜈 is Ricci tensor, 𝑔𝜇𝜈 is metric tensor, Λ is cosmological constant, 𝑘 is a constant equal to 
8𝜋𝐺

𝑐4  with 𝐺 the well-known 

gravitational constant, c is speed of light, and 𝑇𝜇𝜈 is energy-momentum tensor.  

Later, it was found that the cosmological constant was not significant and it was set to zero. Finally, the Einstein field 

equations in four dimensions can be written as 

 

𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = 𝑘𝑇𝜇𝜈,         (4) 

where, 𝐺𝜇𝜈is Einstein tensor. 

Now, we take our off-diagonal metric for a symmetric sphere of anisotropic fluid as 

 

ds2 = Udt2 − Wdtdr −
4−W2

4U
dr2 − r2dθ2 − r2sin2θdϕ2,       (5) 

with assumptions similar to Friedman and Stav (2019) and additionally setting 𝑐 = 1. 𝑈 and 𝑊 are functions of 𝑟 only. The 

determinant of time-radial part of the metric given in equation (5) is −1. The geodesic equation in such metric exactly represents 

the precision of a planetary orbit, perihelion shift in a double star system, deflection of light and Shapiro time delay (Friedman & 

Stav, 2019). 

We are interested in finding the spherical spacetime for a fluid of anisotropic nature. We achieve this by solving the 

Einstein field equations where the energy-momentum tensor is non-zero. In order to proceed and obtain solutions, we need some 
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basic components and tensor used in general relativity. Here, we are taking Ricci tensor as 𝑅𝜇𝜈, Ricci scalar as 𝑅, Einstein tensor 

as 𝐺𝜇𝜈 and energy-momentum tensor as 𝑇𝜇𝜈, for our defined spherically symmetric metric with off-diagonal elements. 

 

We calculate the Ricci scalar as follows 

 

𝑅 = 𝑈′′ +
4

𝑟
𝑈′ +

2

𝑟2
𝑈 −

2

𝑟2
 .         (6) 

Ricci tensor components can be given as follows 

 

𝑅𝑡𝑡 =
1

2
𝑈𝑈′′ +

𝑈

𝑟
𝑈′, 

 

(7) 

 

𝑅𝑡𝑟 = −
1

4
𝑊𝑈′′ −

𝑊

2𝑟
𝑈′ = 𝑅𝑟𝑡 , 

 

(8) 

 

𝑅𝑟𝑟 =
𝑊2

8𝑈
𝑈′′ −

1

2𝑈
𝑈′′ +

𝑊2

4𝑟𝑈
−

1

4𝑟𝑈
𝑈′, 

 

(9) 

 

𝑅𝜃𝜃 = −𝑟𝑈′ − 𝑈 + 1, 

 

(10) 

 

𝑅𝜙𝜙 = 𝑠𝑖𝑛2𝜃𝑅𝜃𝜃 . 

 

(11) 

The non-zero Einstein tensor components are 

 

𝐺𝑡𝑡 =
𝑈

𝑟2 (−𝑟𝑈′ − 𝑈 + 1), (12) 

 

𝐺𝑡𝑟 =
𝑊

2𝑟2 (𝑟𝑈′ + 𝑈 − 1) = 𝐺𝑟𝑡, 

 

(13) 

 

𝐺𝑟𝑟 =
(𝑊2−4)

4𝑟2𝑈
(−𝑟𝑈′ − 𝑈 + 1), 

 

(14) 

 

𝐺𝜃𝜃 = 𝑟 (
1

2
𝑟𝑈′′ + 𝑈′), 

 

(15) 

 

𝐺𝜙𝜙 = 𝐺𝜃𝜃𝑠𝑖𝑛2𝜃. 

 

(16) 

 

Now, we are taking an inhomogeneous fluid with the following assumptions for the components of energy-momentum 

tensor 𝑇𝑡
𝑡 = 𝜌; 𝑇𝑟

𝑡 = −𝑃𝑡𝑟 = 𝑇𝑡
𝑟; 𝑇𝑟

𝑟 = −𝑃𝑟; 𝑇𝜃
𝜃 = −𝑃𝜃; 𝑇𝜙

𝜙
= −𝑃𝜙 and consequently, 𝑇𝑡𝑡 = 𝜌𝑈; 𝑇𝑡𝑟 =

𝑊

2
𝑃𝑡𝑟 = 𝑇𝑟𝑡; 𝑇𝑟𝑟 =

(4−𝑊2)

4𝑈
𝑃𝑟; 𝑇𝜃𝜃 = 𝑟2𝑃𝜃; 𝑇𝜙𝜙 = 𝑃𝜙𝑟2𝑠𝑖𝑛2𝜃, where, 𝜌, 𝑃𝑟 , 𝑃𝜃 , 𝑃𝜙, and 𝑃𝑟𝑡 are proper energy density, radial pressure, tangential 

pressure, co-tangential pressure, and pressure in time varying radial direction respectively. 

With the assumptions for energy-momentum tensor made above for a locally anisotropic fluid and using equations (12) 

to (16), we obtain the following field equations 

 
1

𝑟2 (−𝑟𝑈′ − 𝑈 + 1) = 8𝜋𝐺𝜌, (17) 

 
1

𝑟2 (𝑟𝑈′ + 𝑈 − 1) = 8𝜋𝐺𝑃𝑡𝑟 = 8𝜋𝐺𝑃𝑟𝑡 , 

(18) 

 
1

𝑟2 (𝑟𝑈′ + 𝑈 − 1) = 8𝜋𝐺𝑃𝑟, 

(19) 

 
1

𝑟
(

1

2
𝑟𝑈′′ + 𝑈′) = 8𝜋𝐺𝑃𝜃. 

(20) 

 

Now, by simply following the Herrera algorithm (Herrera, 2008), we subtract equation (20) from equation (19) to get 

 

Π = −
1

2
𝑈′′ +

1

𝑟2 𝑈 −
1

𝑟2 , (21) 

where, Π = 8𝜋𝐺(𝑃𝑟 − 𝑃𝜃). 
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2.1 Solution for static 𝚷 
 

If we consider a local coordinate system then Π is constant in the region of fixed coordinates (𝑡, 𝑟, 𝜃, 𝜙).  In this case, 

equation (21) is a simple differential equation of order two and can be solved easily. Solving this equation gives the following 

result 

𝑈 = 1 +
𝐶1

𝑟
+ 𝑟2 (

2Π

9
+ 𝐶2) −

2

3
𝑟2Π𝑙𝑜𝑔𝑟. (22) 

This solution is dependent upon 𝑟 and is consistent when Π = 0 , and 𝐶1 and  𝐶2 are integration constants. Therefore, 

 

𝑈 = 1 +
𝐶1

𝑟
+ 𝐶2𝑟2 

 

  First, we take 𝑊 = 0 and the solution obtained in equation (22) to write our metric given by equation (5), and the metric 

takes the following form 

 

ds2 = (1 +
C1

r
+ C2r2) dt2 −

1

(1+
C1
r

+C2r2)
dr2 − r2dθ2 − r2sin2θdϕ2.  (23) 

If we take 𝐶1 = −2𝑀 and 𝐶2 = −
1

3
Λ, where 𝑀 is the mass of source and Λ is cosmological constant, this solution is 

exactly similar to the solution given earlier in the metric of the Schwarzschild-de Sitter spacetime (Kagramanova, 2006; Kerr,  

2003; Sereno, 2006) and static solution of Einstein’s field equations (Zubairi, Romero & Weber, 2015). 

Similarly, for a constant value of 𝑊 that is 𝑊 = 𝐾, the solution metric becomes 

 

𝑑𝑠2 = (1 +
C1

r
+ C2r2) 𝑑𝑡2 − 𝐾𝑑𝑡𝑑𝑟 −

(4−𝐾2)

(1+
C1
r

+C2r2)
𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2. (24) 

We took 𝑊 to be either zero or a constant because 𝑊 does not appear in any of the field equations. 

Further, it is manifestly clear from the field equations that 𝑃𝑡𝑟 = 𝑃𝑟𝑡 = 𝑃𝑟. Therefore, we are solving equation (17) only 

taking the energy density as a constant. We get the solution, 

 

𝑈 = 1 +
𝐶3

𝑟
−

8𝜋𝐺𝜌

3
𝑟2. (25) 

Putting  𝐶3 = 2𝑀𝐺 in equation (25) and doing a little calculations, we get  

 

𝑈 = 1 −
1.99𝐺𝑀

𝑟
 . (26) 

Further from the local conservation law of energy-momentum (Stephani, Kramer, Maccallum, Hoenselaers, & Herlt, 

2003), 𝑇𝜈;𝜇
𝜇

= 0. We also know that  

 

𝑇𝜈;𝜇
𝜇

=
1

√−𝑔

𝜕

𝜕𝑥𝜇 (√−𝑔𝑇𝜈
𝜇

) − Γ𝜈𝜇
𝛼 𝑇𝛼

𝜇
. 

Using the above condition for conservation and the formula of energy-momentum tensor, we obtain the following four 

equations 

 

𝑃′𝑡𝑟 +
1

4
𝑊𝑈′(𝑃𝑟 − 𝜌) + (

1

2𝑈
𝑈′ −

1

2
𝑈𝑈′ −

𝑊2

8𝑈
𝑈′ +

2

𝑟
) 𝑃𝑡𝑟 = 0 

(27) 

 

𝑃′𝑟 + (
1

2𝑈
𝑈′ −

𝑊2

8𝑈
𝑈′) (𝜌 + 𝑃𝑟) + (

1

4
𝑊𝑈′ +

𝑤

4𝑈2
𝑈′ −

𝑊3

16𝑈2
𝑈′ +

1

2𝑈
𝑊′) 𝑃𝑡𝑟 +

1

𝑟
(2𝑃𝑟 − 𝑃𝜃 − 𝑃𝜙) = 0  (28) 

 

𝑃′𝜃 + 𝑐𝑜𝑡𝜃(𝑃𝜃 − 𝑃𝜙) = 0, 

  

 (29) 

 

𝑃′𝜙 = 0. 
  

 (30) 

Equation (30) produces the result 𝑃𝜙 = 𝐶, where C is an integration constant. 

Now, taking equation (29), we get, 

 

𝑃′𝜃 + 𝑃𝜃𝑐𝑜𝑡𝜃 = 𝐶𝑐𝑜𝑡𝜃.  (31) 

This is a simple linear equation of order one which can be solved easily. The result is  

 

𝑃𝜃 = 𝐶 +
𝐶4

𝑠𝑖𝑛𝜃
.  (32) 

Now taking 𝑊 = 0  and 𝑃𝑡𝑟 = 𝑃𝑟 as discussed above and putting these in equation (27), we get 

 

𝑃′𝑟 + (
1

2𝑈
𝑈′ −

1

2
𝑈𝑈′ +

2

𝑟
) 𝑃𝑟 = 0,   (33) 

Putting the value of U from equation (26) in equation (33), we get  
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𝑃′𝑟 + (
1

2

1.99𝐺𝑀
𝑟2

1 −
1.99𝐺𝑀

𝑟

−
1.99𝐺𝑀

𝑟2
(1 −

1.99𝐺𝑀

𝑟
) +

2

𝑟
) 𝑃𝑟 = 0, 

this equation produces the following result 

 

𝑃𝑟 =
𝑒

0,99(
𝐺2𝑀2

𝑟2 −
𝐺𝑀

𝑟
)

𝑟3/2√𝑟−1.99𝐺𝑀
𝐶5, 

(34) 

where, 𝐶5 is an integration constant. Upon setting 𝐶5 = 1 in equation (34), we get 

 

𝑃𝑟 =
𝑒

0,99(
𝐺2𝑀2

𝑟2 −
𝐺𝑀

𝑟
)

𝑟3/2√𝑟 − 1.99𝐺𝑀
 

(35) 

Equation (35) is the final equation of state of the radial pressure and mass energy-density. 

 

2.2 Solution for non-static 𝚷 
 

Now we take the region of (𝑡 + 𝑑𝑡, 𝑟 + 𝑑𝑟, 𝜃 + 𝑑𝜃, 𝜙 + 𝑑𝜙) for all the possible values of (d𝑡, d𝑟, d𝜃, d𝜙) in the space 

of the gravitating object, and then equation (21) can be solved with a little difficulty as follows 

 

𝑈 =
𝐶6

𝑟
+ 𝐶7𝑟2 +

2

3𝑟
∫(1 + 𝑥2Π(𝑥))𝑑𝑥 −

2𝑟2

3
∫

1 + 𝑦2Π(𝑦)

𝑦3

𝑟

1

𝑟

1

𝑑𝑦 

(36) 

Therefore, from the equations (5) and (36), we obtain 

 

𝑑𝑠2 = (
𝐶6

𝑟
+ 𝐶7𝑟2 +

2

3𝑟
∫(1 + 𝑥2Π(𝑥))𝑑𝑥 −

2𝑟2

3
∫

1 + 𝑦2Π(𝑦)

𝑦3

𝑟

1

𝑟

1

𝑑𝑦) 𝑑𝑡2

−
1

𝐶6

𝑟
+ 𝐶7𝑟2 +

2
3𝑟 ∫ (1 + 𝑥2Π(𝑥))𝑑𝑥 −

2𝑟2

3 ∫
1 + 𝑦2Π(𝑦)

𝑦3
𝑟

1

𝑟

1
𝑑𝑦

𝑑𝑟2

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2) 

(37) 

In this way, from equation (37), any solution for non-static Π in case of an anisotropic distribution of fluids in a gravitating 

object can be completely determined by the estimation of one generating function Π. 

Now for any perfect fluid system, we can take Π = 0, hence equation (36) turns to  

 

𝑈 = 1 +
𝐶6

𝑟
+ 𝐶7𝑟2 (38) 

Thus, from equation (38) and equation (5), we get 

 

𝑑𝑠2 = (1 +
𝐶6

𝑟
+ 𝐶7𝑟2) 𝑑𝑡2 −

1

1 +
𝐶6

𝑟
+ 𝐶7𝑟2

𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2) (39) 

From the equations (17), (19) and (38) it is clear that 𝜌 > 0 and 𝜌 > 𝑃𝑟 ,  𝑃𝑡𝑟,𝑃𝜃 are monotonically decreasing functions 

of 𝑟, which formulates the stability of the solution with meaningful physical applications. 

 

3.  Pioneer Anomaly and General Relativity 
 

We have obtained the solution of 𝑈 = 𝑈(𝑟) in equation (22) as a function of 𝑟. Therefore, we may consider 𝑈 as function 

of r only. If, with the initial condition, taking 𝐶1 =
2𝑀𝐺

𝑐2  and 𝐶2 =
2𝑀𝐺

𝑐2  (Narlikar, 2002) and approximating Π = 0 then for 𝑟𝜖[0, 10] 

we observe a sudden change in 𝑈. The graph of this function is shown in Figure 1. 

Now, to obtain a numerical approximation of the radial pressure, putting 𝐶5 = 1, 𝐺𝑀 = 1 and taking 𝑟 in a range [0, 20] 
in equation (34), we observe a continuous drop till 𝑟 = 20 in the radial pressure after a sudden drop at approximately 𝑟 = 5. This 

situation well explains the Pioneer anomaly studied earlier (Philip, 1997), which is evidently clear from the following figure. 

Similarly, from equation (32), we notice a sudden change in tangential pressure at the extremities of tangential angle in 

the range [0, 𝜋]. We see the following graph of tangential pressure in the specified range. 

 

3.1 Anomalous acceleration 
 

The constant acceleration acting on the spacecraft has been measured as 8.5 × 10−8𝑚/𝑠2 (Anderson et al., 1998). There 

is one another interpretation in which it is believed that there is a constant acceleration of 8.74 ± 1.33 × 10−10𝑚/𝑠2 directed 

towards the Sun (Anderson et al., 2002). 
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Figure 1. Plot of 𝑈(𝑟) when Π = 0, 

𝑟𝜖[0, 20]. 

 

Figure 2. Plot of 𝑃𝑟 when 𝐶5 = 1, 𝐺𝑀 = 1 

and 𝑟𝜖 [0, 20]. 

 

Figure 3. Plot of 𝑃𝜃, when 𝐶 = 1 and 

𝜃𝜖[0, 𝜋]. 

 

Many researchers have obtained clock acceleration in different ways (Feldman, 2013; Ranada, 2004). We are using our 

off-diagonal spherically symmetric metric for a perfect fluid, 

 

𝑐2𝑑𝜏2 = 𝑑𝑠2, (40) 

where 𝜏 is the proper time. 

Taking equations (39) and (40) and considering that the solid angle remains constant at larger distances, we obtain 

 

𝑑𝜏2 = 𝑌𝑑𝑡2 −
1

𝑌𝑐2
𝑑𝑟2, (41) 

where 

 

𝑌 = 1 +
𝐶1

𝑟
+ 𝐶2𝑟2,  

by taking 𝐶1 = 𝐶2, we get 

 

𝑌 = 1 +
2𝐺𝑀

𝑟𝑐2
+

2𝐺𝑀

𝑐2
𝑟2, (42) 

For a very large value of r equation (41) can further be approximated as  

 

dτ = (1 +
3

2
(

𝑑𝑟

𝑐𝑑𝑡
)

2
) (

1

𝑟
+ 𝑟2)

𝐺𝑀

𝑐2 𝑑𝑡. (43) 

In terms of an effective speed of light c(t) in coordinate time t, the clock rate difference can be given as, 

 

 

c(t) = c (1 +
3

2
(

𝑑𝑟

𝑐𝑑𝑡
)

2
) (

1

𝑟
+ 𝑟2)

𝐺𝑀

𝑐2 . (44) 

Now, dividing by 𝜆, the wavelength, we get, 

 

𝜇𝑜 = 𝜇𝑠 (1 +
3

2
(

𝑑𝑟

𝑐𝑑𝑡
)

2
) (

1

𝑟
+ 𝑟2)

𝐺𝑀

𝑐2 , (45) 

where 𝜇𝑜 is observed frequency and 𝜇𝑠 is source frequency. 

In case of pioneer the one-way Doppler formula for a source moving away from the observer with velocity v can be given 

as 

𝜇𝑜 = 𝜇𝑠 (1 −
𝑣

𝑐
).  

Hence, by ignoring 
1

𝑐

𝑑𝑟

𝑑𝑡
 the Doppler formula becomes  

 

𝜇𝑜 = 𝜇𝑠 (
1

𝑟
+ 𝑟2)

𝐺𝑀

𝑐2 (1 −
𝑣

𝑐
). (46) 

Now, using the Wong (2019) methodology in Newtonian approximation without the cosmological constant Λ, to calculate 

acceleration 𝑎𝑝 we obtain 

 

𝑎𝑝 = 2𝐺𝑀 (
1

𝑟2)
�̇�

𝑐
, (47) 

where �̇� is the velocity of source moving away from the observer. The value of  
�̇�

𝑐
  is of the order of 10−4. 

We obtain 𝑎𝑝 = 2.493 × 10−11𝑚/𝑠2 at a distance of 20 AU. This is a better calculated value than the others. The 

previously calculated 𝑎𝑝  by a few researchers are summarized in Table 1. 
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4. The Cosmological Constant       
 

If we take 𝐶2 = −
1

3
Λ as we have discussed in connection with equation (23), we get 

 

Λ =
8𝜋𝐺𝜌

3
, (48) 

where,   

 

ρ =
M

4
3

πr3
 

(49) 

Using equations (48) and (49), we can write the cosmological constant as follows 

 

Λ =
2𝐺𝑀

𝑟3 . (50) 

Equation (50) shows that the cosmological constant taken by Kagramanova, Kunz, and Lammerzahl  (2006) is dependent 

on 𝑟. In fact, the cosmological constant has turned into a function of the variable radial coordinate and produces a varying effect 

with variation in 𝑟 , but slowly it gains a nearly constant nature or an infinitesimally small increasing nature at large values of 𝑟. 

The value of cosmological constant at the large 100 AU distance is of the order of 10−28. The nature of Λ in a smaller range and 

in a larger range is shown in Figure 4 and Figure 5 respectively. 

 

   
 

Figure 4. Plot of 𝑎𝑝 for 0 ≤ 𝑟 ≤ 20. 

 

Figure 5. Plot of Λ, when 𝑟𝜖[0, 1𝐴𝑈]. 

 

Figure 6. Plot of Λ, when 𝑟𝜖[0, 100𝐴𝑈]. 
 

Table 1. Numerical values of 𝑎𝑝 calculated with different metrics 

 

Author Distance (inAU) 𝑎𝑝 

   

AlMosallami (2012) 25.2 2.62× 10−10𝑚/𝑠2 

Wong (2019) 30 3.75× 10−10𝑚/𝑠2 

Ferreira (2013) 20 2.5× 10−10𝑚/𝑠2 
   

 

All the graphically shown approximations described above can also be tabulated as follows. In Table 2, we are showing 

the approximate values of radial pressure, the component U of the metric tensor and the cosmological constant in the range 10 ≤
𝑟 ≤ 100. 

 
Table 2. Numerical approximations of Π(𝑟), U(r), and Λ(𝑟) for 10 ≤ 𝑟 ≤ 100] 
 

r (in AU) P(r) Π(𝑟) U(r) Λ(𝑟) 

     

10 1.00428 × 10−9 1.04953 × 10−26 8.90378 × 1037 6.21327 × 10−25 
20 3.53945 × 10−10 2.55854 × 10−27 3.56151 × 1038 1.55014 × 10−25 
30 1.92549 × 10−10 1.12814 × 10−27 8.01342 × 1038 6.92628 × 10−26 
40 1.25038 × 10−10 6.32116 × 10−28 1.42464 × 1039 3.91742 × 10−26 
50 8.94608 × 10−11 4.03623 × 10−28 2.22594 × 1039 2.51939 × 10−26 
60 6.80514 × 10−11 2.79867 × 10−28 3.20536 × 1039 1.75712 × 10−26 
70 5.40010 × 10−11 2.05394 × 10−28 4.36285 × 1039 1.29588 × 10−26 
80 4.41981 × 10−11 1.57127 × 10−28 5.69842 × 1039 9.95548 × 10−27 
90 3.70398 × 10−11 1.24072 × 10−28 7.21200 × 1039 7.89036 × 10−27 
100 3.16247 × 10−11 1.00448 × 10−28 8.90378 × 1039 6.40916 × 10−27 
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5. Conclusions 
 

We took an off-diagonal spherically symmetric 

metric to obtain solutions of Einstein field equations in order to 

study inhomogeneously gravitating objects. In this metric, we 

obtained a solution 1 +
𝐶1

𝑟
+ 𝐶2𝑟2, which is analogous to the 

solution 1 −
2𝑀

𝑟
−

1

3
Λ𝑟2 given by Kagramanova et al. (2006) to 

study the pioneer anomaly. By this comparison we were able to 

show that the cosmological constant is of varying nature and 

dependent on r, and for large values of r the cosmological 

constant is growing very slowly or is nearly constant. In a 

smaller range of r namely [0, 1𝐴𝑈] and taking all the 

integration constants as 1, the cosmological constant is 

decreasing in the order of 10−11 . But in a larger range, as we 

observe in Figure 5, the cosmological constant shows 

extremely slow variation after 𝑟 = 30 AU. This observation 

reveals that the cosmological constant is not achievable in the 

form of a perfect invariant. Hence, the cosmological constant 

has been turned into an expansion variable. Therefore, we can 

infer that the cosmological constant in the form obtained by us 

has some impact in the pioneer anomaly. 

We also observed a sudden change in radial pressure 

in the range 𝑟𝜖[0, 20] and an increase in tangential pressure at 

the extremities of the tangential angle in the range 0 ≤ 𝜃 ≤ 𝜋. 

The radial pressure decreases from 𝑟 = 10 AU to 𝑟 = 100 AU 

in the range from 1.00428 × 10−9 to 3.16247 × 10−11. 

Similarly, the tangential pressure exhibits a sudden change at 

𝜃 = 𝜋. The metric component 𝑈(𝑟) exhibits a consistently 

increasing behavior from 𝑈(10) to 𝑈(100) with r. All these 

results establish the decline in gravity due to a gravitating 

object in any arbitrary range, which is a cause of the pioneer 

anomaly. We estimated the value of 𝑎𝑝 as 2.493 × 10−11𝑚/𝑠2 

at 20 AU from the Sun, which is approximately equal to the 

observed data during 7.8 years of the study of pioneer anomaly. 

We also obtained another solution 𝑈 =
𝐶1

𝑟
+ 𝐶2𝑟2 +

2

3𝑟
∫ (1 + 𝑥2Π(𝑥))𝑑𝑥 −

2𝑟2

3
∫

1+𝑦2Π(𝑦)

𝑦3

𝑟

1

𝑟

1
𝑑𝑦 with one 

generating function Π, which has physical significance in some 

certain conditions of energy density and pressure. If we restrict 

the object in an isotropic system then we got the solution 𝑈 =

1 +
𝐶1

𝑟
+ 𝐶2𝑟2, which is a modified form of the solutions 

(Gabbanelli, Rincón, & Rubio, 2018; Kramer, Stephani, 

MacCallum., & Herlt1980; Singh, Bhar, & Pant, 2016) given 

for anisotropic fluid. 

Moreover, from Table 1, we conclude that an off-

diagonal metric is better suited for the study of behavior of an 

object in motion under an inhomogeneous gravitating body. 
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