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Abstract 
 

The behaviors of wave solutions of the fractional nonlinear space-time Sharma-Tasso-Olever equation and the 

fractional nonlinear space-time Estevez-Mansfield-Clarkson equation, representing a fluid dynamics equation and a shallow 

water equation, respectively, can be obtained by transforming the fractional nonlinear space-time partial differential equations 

into nonlinear ordinary differential equations with the Jumarie's Riemann-Liouville fractional derivative, and solving for a finite 

series form of solution in the Riccati sub-equation method. The newly discovered traveling wave solutions took the forms of 

generalized triangular functions and generalized hyperbolic functions, which ultimately led to the assessing physical wave 

behaviors. These behaviors are manifested in kink and periodic waves, and they are separately depicted by 2-D, 3-D and contour 

graphs. In addition, the results we received were more diverse than previous solutions. 

 

Keywords: fractional Sharma-Tasso-Olever equation, fractional Estevez-Mansfield-Clarkson equation, Riccati sub-equation  
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1. Introduction  
 

In the fields of applied mathematics, applied science 

and engineering, the nonlinear evolution equations are very 

important equations that are employed in real-world scenarios. 

There are many models that have received attention in the 

context of fluid dynamics, fluid mechanics, neurons, optical 

fibers, electric circuits, water waves, plasma waves, capillary-

gravity waves, plasma physics, chemical kinematics, chemical 

physics, etc. It is necessary to examine the techniques for 

solving the fractional nonlinear partial differential equations 

(PDEs) to conduct additional research into the behaviors of 

the aforementioned components. The investigation of 

solutions to fractional nonlinear PDEs is of academic interest 

because of the enhanced level of detail and generality 

exhibited by these solutions in comparison to conventional 

 
ones. Furthermore, it is feasible to make a comparison 

between graphs representing the physical solutions of 

different fractional orders. Mathematicians have developed 

and applied innovative and strong new methods in order to 

search for new outcomes of the exact traveling wave 

solutions, such as Khater II method (Khater, 2023; Zhao, Lu, 

Salama, Yongphet, & Khater, 2022),  generalized Khater 

method (Khater, 2023), modified Khater method (Khater, 

2023), /G G -expansion method (Phoosree, & Chinviriyasit, 

2021), 2/G G -expansion method (Behera, Aljahdaly, & Virdi, 

2022; Behera, & Aljahdaly, 2023), simple equation method 

(Phoosree, & Thadee, 2022; Sanjun, & Chankaew, 2022), 

Riccati-Bernoulli Sub-ODE (Alharbi, & Almatraf, 2020), 

Poincaré-Lighthill-Kuo method (Bhatti, & Lu, 2019), 

generalized Kudryashov method (Gaber, Aljohani, Ebaid, & 

Machado, 2019; Rahman, Habib, Ali, & Miah, 2019), 

modified Kudryashov method (Hao, Zhang, & Pang, 2019), 

fractional sub-equation method (Yépez-Martínez, & Gómez-

Aguilar, 2019), Sardar sub-equation method (Khater, 2023; 
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Khodadad, Nazari, Eslami, & Rezazadeh, 2017; Rehman, Iqbal, Subhi Aiadi, Mlaiki, & Saleem, 2022) and so on. 

The Sharma-Tasso-Olever (STO) equation (Sheikh, Taher, Hossain, Akter, & Roshid, 2023) is a third order nonlinear 

evolution equation which has been used to explain a broad variety of physical processes, including the progression of nonlinear 

waves in fluid dynamics. The nonlinear STO equation has state u = u(x, t) and  is a non-zero constant as shown here, 

 

 
2 23 3 3 0.    t x x xx xxxu u u u uu u  (1) 

 Jianming, Jie and Wenjun (2011) have found 7 solutions to the STO equation by use of Bäcklund transformations. The 

found solutions are in the form of rational functions, exponential functions and hyperbolic functions.  

The Estevez-Mansfield-Clarkson (EMC) equation (Mansfield, & Clarkson, 1997) is a nonlinear evolution equation of 

the fourth order that was developed from Mansfield and Clarkson's dispersion of patterns in liquid drop in 1997. This equation 

was used to study the behavior of waves in shallow water, and it is as follows: 

 

0,    yyyt y yt yy t ttu u u u u u  (2) 

where u = u(x, y, t) and  φ is a non-zero constant. The solution to nonlinear fractional space-and-time EMC equation by 

Kudryashov method (Thadee, Chankaew, & Phoosree, 2022) has one result in the form of an exponential functions, and the 

behaviors are found to be kink and periodic waves. 

 

Definition 1. The fractional of Jumarie's Riemann-Liouville derivative (Jumarie, 2006) is given with the fractional derivative of 

order Φ as follows, 
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In the year 2009, Jumarie discovered the following fundamental properties of the fractional of Jumarie's Riemann-

Liouville derivative (Jumarie, 2009): 
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(6) 
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(8) 

As a result of our study, we have discovered many new exact traveling wave solutions of the fractional  nonlinear 

space-time STO equation and the fractional  nonlinear space-time EMC equation by combining the fractional Jumarie's Riemann-

Liouville derivative and the algorithm of the Riccati sub-equation method. Some examples of wave behavior graphs in contour, 

2-dimensional, and 3-dimensional plots are shown. Furthermore, the outcomes obtained exhibited wider variations compared to 

results from prior methodologies. 

 

2. Algorithm of Riccati Sub-Equation Method 
 

This section describes the Riccati sub-equation method for locating traveling wave solutions for conformable fractional 

partial differential equations. Consider the following nonlinear conformable fractional partial differential equation in three 

independent variables x, y and t: 

 

 2 2 2, , , , , , , , 0, 0,0 1,            t x y t x y t yM u D u D u D u D u D u D u D D u t   (9) 

where u = u(x, y, t) and M is a polynomial expression including those of the greatest order and those with nonlinear factors in u 

with its derivatives in fractional form.  

The following five processes can be used in the Riccati sub equation method. 

First: Transformation process 

Establishing a solution and using wave transformation, 
 

   
     

, , , ,
1 1 1

  
 

  

   
        

x y t
u x y t U

 
(10) 

where β is a general term for the transformation of traveling waves, α, δ and η are non-zero constants with positive direction of  

traveling wave when η > 0 and negative direction when η < 0 (Phoosree, 2019). We substitute Equation (10) into Equation (9) to 

get  
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(11) 

where N is a polynomial including those of the greatest order and those with nonlinear factors in U with its derivatives. 

Second: Solution assuming process 

Assume the solution to Equation (11) is in the form of a finite series, 

 

   
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i

i

i

U cW 
 

(12) 

when Ci are constants with CP is non-zero. 

Third: General solutions of Riccati sub equation method  

The Riccati sub equation method (Khodadad, Nazari, Eslami, & Rezazadeh, 2017) is used to find W as shown below: 

 

   2 ,  W W    (13) 

where ρ is an arbitrary constant. The general solutions of Equation (13) are expressed in three cases as follows.  

Case I: when ρ < 0,  

   1 tanh ,pqW      
 

(14) 
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(15) 
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(16) 

 

     4 coth 2 csch 2 ,pq pqW             
(17) 

 

 5

1
tanh coth ,

2 2 2
pq pqW

 
    

     
            

    

 
(18) 

 

 
   

 

2 2

6

cosh 2
,

sinh 2

pq

pq

Q R Q
W

Q R

  




    


 

 
(19) 

 

 
   

 

2 2

7

sinh 2
,

cosh 2

pq

pq

R Q Q
W

Q R

  




    
 

 

 
(20) 

where Q, R are nonzero constants with R2 – Q2 > 0.  

Case II: when ρ > 0,  

   8 tan ,pqW     
(21) 
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(22) 
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where Q, R are nonzero constants with Q2 – R2 > 0.  
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Case III: when ρ = 0,  

 15

1
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
W

b

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(28) 

where b is a constant. 

 The different types of generalized triangular functions (Khodadad, Nazari, Eslami, & Rezazadeh, 2017) are defined as 

follows, with p and q arbitrary constants, p > 0, q > 0, 
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where θ is an independent variable. 

 The different types of generalized hyperbolic functions (Khodadad, Nazari, Eslami, & Rezazadeh, 2017) are defined as 

follows, with p and q arbitrary constants, p > 0, q > 0, 
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where θ is an independent variable. 

Fourth: P exploring process  

To obtain the positive integer P, equation (11) must be balanced for its highest order derivative term and its nonlinear term. 

Fifth: Solutions reaching process  

It is necessary to construct the parameters Ci, (i = 1, 2, 3, . . ., P) and η by gathering the coefficients of all terms that have the 

same order Wi and then to set those coefficients to zero. When all the parameters in Equation (12) are substituted, the solutions to 

Equation (9) for the traveling wave are reached.  

 

3. Application 
 

The fractional nonlinear space-time STO equation and the fractional nonlinear space-time EMC equation have their 

traveling wave behaviors investigated here. 
 

3.1 The fractional nonlinear space-time STO equation 
 

The STO equation is a third-order nonlinear evolution equation that has been widely employed in the study of various 

physical phenomena, such as the propagation of nonlinear waves in fluid dynamics. The following is an explanation of the 

fractional nonlinear space-time STO equation, 
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2 2 33 3 3 0, 0,0 1,            t x x x xD u D u u D u uD u D u t  (41) 

where u = u(x, t) and  is a non-zero constant. Equation (41) was transformed by equation (10) into an ordinary differential 

equation (ODE) without taking y into consideration,  
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After integration, the constant in Equation (42) is set to 0, 
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Then we utilized the balance approach of the highest order derivative term and the nonlinear term, thus P = 1. The equation (12) 

turned this into 

 

   0 1U c c W    (44) 

Equation (44) was now used in place of equation (43). In the fifth process, we grouped all the terms that corresponded to the 

same power of W(β), and set each coefficient equal to zero as shown below, 
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Solving these equations, we get 

 

1c    and 2
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The following are the exact traveling wave solutions to the fractional nonlinear space-time STO equation:    

Type I : when ρ < 0,  
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(56) 

where Q, R are nonzero constants with R2 – Q2 > 0. 

Type II : when ρ > 0, 

case 8 :    8 0, tan ,pqu x t c      
(57) 

 

case 9 :    9 0, cot ,pqu x t c      (58) 

 

case 10 :      10 0, tan 2 sec 2 ,pq pqu x t c         (59) 
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where Q, R are nonzero constants with Q2 – R2 > 0. 

Type III : when ρ > 0, 
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b is a constant, (64) 
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To obtain the physical wave behavior graphs, we set the parameters as shown in Table 1. 
 

Table 1. Parameters set for some traveling wave solutions of the fractional nonlinear space-time STO equation 

 

Solution Parameters 

  

Equation (50) 0 1, 1, 0.2, 1, 1, 1, 0.5,10 x 30,10 30            c p q t   

Equation (51) 0 1, 1, 0.2, 1, 1, 1, 0.5,10 x 30,10 30            c p q t   

Equation (53) 0 1, 1, 0.2, 1, 1, 1, 0.5,10 x 30,10 30             c p q t   

Equation (54) 0 1, 0.1, 0.2, 1, 1, 1, 0.5,10 x 30,10 30            c p q t   

Equation (55) 0 1, 0.1, 0.2, 1, 1, 1, 0.5, 1, 2,            c p q Q R  10 x 30,10 30   t  

Equation (56) 0 1, 1, 0.2, 1, 1, 1, 0.5, 1, 2,            c p q Q R  10 x 30,10 30   t  

Equation (64) 0 1, 0.1, 0.2, 0, 0.5, 1,10 x 30,10 30           c b t   

  

 

The physical wave behaviors of the fractional nonlinear space-time STO equation are shown in Figures 1-7. 

 

 
 

Figure 1. Kink graph in (a) 3-D, (b) contour, and (c) 2-D plot of equation (50) 

 

 
 

Figure 2. Kink graph in (a) 3-D, (b) contour, and (c) 2-D plot of equation (51) 
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Figure 3. Kink graph in (a) 3-D, (b) contour, and (c) 2-D plot of equation (53) 

 

 
 

Figure 4. Kink graph in (a) 3-D, (b) contour, and (c) 2-D plot of equation (54) 

 

 
 

Figure 5. Kink graph in (a) 3-D, (b) contour, and (c) 2-D plot of equation (55) 

 

 
 

Figure 6. Kink graph in (a) 3-D, (b) contour, and (c) 2-D plot of equation (56) 

 

 
 

Figure 7. Kink graph in (a) 3-D, (b) contour, and (c) 2-D plot of equation (64) 
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3.2 The fractional nonlinear space-time EMC equation 
 

The EMC equation is based on the study of dispersion pattern in liquid droplets. The equation under consideration was 

employed in the analysis of wave dynamics in shallow water. The fractional nonlinear space-time EMC equation (Thadee, 

Chankaew, & Phoosree, 2022) of the fourth order is as follows,  

 
3 2 2 0, 0,0 1,               y t y y t y t yD D u D uD D u D uD u D u t  (65) 

where u = u(x, y, t) and φ is a non-zero constant. Applying the first process, the equation (65) becomes an ODE, 

 
4 2 2

3 2

4 2 2
2 0.   

   
    

d U dU d U d U

d d d d

 
(66) 

Using once integration with zero constant, 

 
23

3 2

3
2 0.   

  

 
    

 

d U dU dU

d d d

 
(67) 

After that, we used the P exploring process, giving P = 1. We get equation (44) again, substituting this equation to equation (67). 

In the fifth process, the system of equations is as follows,    

 

 0 :W   3 2 2 2 2

1 1 12 0,        c c c  (68) 

 

 2 :W   3 2 2

1 1 18 2 0,       c c c  (69) 

 

 4 :W   3 2 2

1 16 0.    c c  (70) 

 

The solution of the system of equations (68)-(70) is 

 

3

1

6
, 4 .c


  


   

 
(71) 

The 15 cases of the exact traveling wave solutions of the fractional nonlinear space-time EMC equation are obtained below: 

Type I : when ρ < 0,  

case 1 :     1 0

6
, , tanh ,


 


   pqu x y t c

 
(72) 

 

case 2 :     2 0

6
, , coth ,


 


   pqu x y t c

 
(73) 

 

case 3 :       3 0

6
, , tanh 2 sech 2 ,


   


       pq pqu x y t c i

 
(74) 

 

case 4 :       4 0

6
, , coth 2 csch 2 ,


   


       pq pqu x y t c

 
(75) 

 

case 5 :  5 0

6 1
, , tanh coth ,

2 2 2

 
   



      
               

     
pq pqu x y t c

 
(76) 

 

case 6 :  
   

 

2 2

6 0

cosh 26
, , ,

sinh 2

  

 

     
  
   
 

pq

pq

Q R Q
u x y t c

Q R

 
(77) 

 

case 7 :  
   

 

2 2

7 0

sinh 26
, , ,

cosh 2

  

 

     
  
   
 

pq

pq

R Q Q
u x y t c

Q R

 
(78) 

where Q, R are two nonzero real constants and satisfy R2 – Q2 > 0. 

Type II: when ρ < 0,  

case 8 :     8 0

6
, , tan ,


 


  pqu x y t c

 
(79) 

 

case 9 :     9 0

6
, , cot ,


 


  pqu x y t c

 
(80) 
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case 10 :       10 0

6
, , tan 2 sec 2 ,


   


   pq pqu x y t c

 
(81) 

 

case 11 :       11 0

6
, , cot 2 csc 2 ,


   


   pq pqu x y t c

 
(82) 

 

case 12 :  12 0

6 1
, , tan cot ,

2 2 2

 
   



     
            

     
pq pqu x y t c

 
(83) 

 

case 13 :  
   

 

2 2

13 0

cos 26
, , ,

sin 2

  

 

   
  
  
 

pq

pq

Q R Q
u x y t c

Q R

 
(84) 

 

case 14 :  
   

 

2 2

14 0

sin 26
, , ,

cos 2

  

 

   
  
  
 

pq

pq

Q R Q
u x y t c

Q R

 
(85) 

where Q, R are two nonzero real constants and satisfy Q2 – R2 > 0. 

Type III: when ρ = 0,  

case 15 :  15 0

6 1
, , ,



 

 
   

 
u x y t c

b

 
b is a constant, (86) 

where 
     

34
.

1 1 1

x y t   


  

  
     

 

By adjusting the parameters in Table 2, we were able to generate the physical wave behavior graphs.  

Figures 8-10 are graphical representations of the physical wave behavior of the solutions associated with the fractional 

nonlinear space-time EMC equation. 
 

Table 2. Parameters set for some traveling wave solutions of the fractional nonlinear space-time EMC equation 
 

Solution Parameters 

  

Equation (72) 0 0, 1, 1, 1, 1, 1, 1, 0.5,0 x 60,           c p q    0 60, 5,10  y t  
Equation (73) 0 0, 1, 1, 1, 1, 1, 1, 0.5,0 x 60,           c p q    0 60, 5,10  y t  
Equation (86) 0 0, 1, 1, 1, 1, 0.5,0 x 60,0 60, 5,10            c y t     

  

 

 
 

Figure 8. Kink graph in (a) 3-D, (b) contour, and (c) 2-D plot for t = 

5, 10 in equation (72) 

 
 

Figure 9. Periodic graph in (a) 3-D, (b) contour, and (c) 2-D plot for 
t = 5, 10 in equation (73) 
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Figure 10. Periodic graph in (a) 3-D, (b) contour, and (c) 2-D plot for 

t = 5, 10 in equation (86) 

 
5. Conclusions 

 

The Riccati sub-equation method, in conjunction 

with the Jumarie's Riemann-Liouville fractional derivative 

showed 15 different traveling wave solutions of the fractional 

nonlinear space-time STO equation. We displayed several of 

the physical wave behavior graphs in 3-D, contour, and 2-D 

plots, after we set the parameters in Table 1. They all showed 

kink waves, traveling waves which increase or decrease from 

one state to another (Phoosree, 2019), as seen in Figures 1 – 7. 

These new solutions are more diverse than those of Jianming, 

Jie and Wenjun (2011), where they had seven solutions in the 

form of rational functions, exponential functions and 

hyperbolic functions. In the same approach as before, we set 

the parameters in Table 2 for the purpose of displaying some 

of the traveling wave solutions of the fractional nonlinear 

space-time EMC equation, as well as the physical wave 

behavior graphs that presented kink waves shown in Figure 8. 

The periodic waves, traveling wave solutions that are periodic 

(Phoosree, 2019), may be seen in Figures 9 and 10. The newly 

obtained precise solutions for this equation exhibit a greater 

degree of diversity in comparison to the previously obtained 

answers, where Thadee, Chankaew, & Phoosree (2022) found 

one solution in the form of an exponential function and 

behavior was found to be kink and periodic waves. 
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