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Abstract

In this study, a numerical method is presented for solving first-order Volterra-Fredholm Integro-differential Equations
(V-FIDEs). The approach converts V-FIDEs into integral equations and uses power series polynomials to approximate them. The
modeled problem is transformed into a system of algebraic equations, and then it is solved using the standard collocation method.
Numerical examples are utilized to assess the method’s effectiveness after the approach’s uniqueness and convergence have been
established. The results demonstrate that the method competes favorably with other methods.

Keywords: collocation method, Volterra-Fredholm, integro-differential equations, approximate solution,

polynomial power series

1. Introduction

Integro-differential Equations (IDEs) are strong tools
in pure and applied mathematics, engineering, and physics.
IDEs are used in many mathematical representations of
physical phenomena in fluid dynamics, heat transfer, diffusion
processes, neutron diffusion, biological models, nano-
hydrodynamics, economics, and population growth models. In
1926, Vito Volterra used an integro-differential approach to
explore population increase with a focus on hereditary effects
(Rahman, 2007).

The various methods for finding the numerical
solution of IDEs include Bernstein method (Irfan, Kumar, &
Kapoor, 2014), Adomian decompositions method (Khan &
Bakoda, 2013; Mittal & Nigam, 2008), Finite difference-
Simpson method (Garba & Bichi, 2021), collocation method
(Agbolade & Anake, 2017; Ajileye & Aminu, 2022; Ajileye &
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Amoo, 2023; Ajileye, James, Ayinde & Oyedepo 2022;
Nemati, Lima & Ordok-hani, 2015), the Modified Adomian
Decomposition Method (MADM) (Ahmad, Ullah, Ullah,
Ahmad, Shah & Ahmad, 2021), hybrid linear multistep method
(Mehdiyera, Ibrahim & Imanova, 2019; Mehdiyera, Imanova &
Ibrahim, 2015), Chebyshev-Galerkin method (Issa & Saleh,
2017), Bernoulli matrix method (Bhraway, Tohidi, &
Soleymani, 2012), differential transform method (Ercan &
Kharerah, 2013), Haar collocation method (Amin, Shah,
Mlaiki, Yuzbasi, Abdeljawad, & Hussain, 2022), Lagrange
interpolation (Shahsavaran & Shahsavaran, 2012), differential
transformation (Darania & Ebadian, 2007), block pulse

functions® operational matrices (Rahmani, Rahimin, &
Mordad, 2011), Chebyshev polynomials (Maadadi &
Rahmoune, 2018), Optimal Auxiliary Function Method

(OAFM) (Zada, Al-Hamami, Nawaz, Jehanzeb, Morsy, Abdei-
Aty, & Nisar, 2021), and spectral homotopy method (Atabakan,
Nasab, Kilicman, & Eshkuvatov, 2013). Hou, Niu, Xu & Ngolo
(2021) presented a method combining the simplified
reproducing kernel method and the homotopy perturbation
method to solve nonlinear Volterra-Fredholm integro-
differential equations. They converted nonlinear to linear using



G. Ajileye et al. / Songklanakarin J. Sci. Technol. 46 (1), 8-15, 2024 9

the homotopy perturbation method and adopted the simplified reproducing kernel method to solve the linear problem.
In this paper, we present a collocation method for the numerical solution of first-order V-FIDEs of the form:

Y () +q@)y () + A [ ka(x, 6) Fa(y(0))dt + A, f01 ko (x, t) F2(y(t))dt = g(x) €y
with the initial condition,

y(@)=c 2
where k4 (x,t) and k,(x, t) are the Volterra and Fredholm integral kernel functions, respectively, and A1, A2, a, ¢, and q are known
constants. g(x) is a given function, and y(x) is the unknown function to be determined.
2. Basic Definitions and Terms

We give certain definitions and fundamental notions in this section for the purpose of problem formulation.

Definition 1. (Ajileye & Amoo, 2023) Let (a,,),m = 0 be a sequence of real numbers. The power series w with coefficients
a,, IS an expression.

yWw) = Xh—oamw™ = 0(w)A (3)
where

Q(W)Z[lwwz WM],A:[aOal...aM]T

Definition 2. (Agbolade & Anake, 2017) The desired collocation points within an interval are determined using this method.
For interval [a, b] they are provided by

(b-a)u

ly=a+ ,au=012.....M (4)

Definition 3. (Ajileye, James, Ayinde, & Oyedepo, 2022) Let z(s) be an integrable function, then

1

olf (z(s)) = Ta)fox(x — )% 1z(s)ds (5)

Definition 4. (Ajileye, James, Ayinde, & Oyedepo, 2022) Let y(x) be a continuous function, then

olf (Y () = y(0) - B 2D ©

Definition 5. (Berinde, 2007) (Strict contraction) Let (X, d) be a metric space. A mapping T: X — X is a strict contraction if T is
a —Lipschitzian with a€[0,1).

d(T(x), T)) < ad(x,y) Vx,yeX
Theorem 1. (Berinde, 2007) (Banach fixed point theorem) Let (X, d) be a complete metric space and T: X—X is a contraction
on X, then T has a unique fixed point xeX such that T(x) = x, and moreover the Picard successive approximations iterative
scheme converges, given by

Xn =Txp—1

3. Materials and Methods

In this section, we establish the uniqueness of the solution and implement a collocation approach for the numerical
solution of V-FIDEs.

Lemma 1. (Integral form): Let yeC ((0,1), R) be the solution to equation (1), then it is equivalent to

YOO + == [ = ) gy () ds + — [ = )% (A [ ka (o £) Fa(0)dt + A f) by (6, 8) Fa(y(©)dt ) ds = B(x) (7)

r(a) ra)

where

QI 1 _
B(x) = gzoyk—!()xk +%f0x(x —5)*1g(s)ds
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Proof.

Applying to equation (1) the operator ol (. )gives

ol (' 00) + 7 Jy e = )7 (G0 ds +
ol (22 Jy ka0 Far(0)dt + 22 f ko (x, ) Fa(y(0)dt) = ol (g ()

and using equation (5) gives
YO + o Jy G = )T (@Y s + s fy G = )% (B FEOF (y(0)de +
o Ji T (6, 0) Fa(y(0)de ) ds = S 2@k 4 L (¥ — 5)71 g (s)ds

k! )
y(x) + I“(a)f (x — )1 (q()y(x))ds + — f (x —s) 1 (Alf ki(x,t) F1(y()dt +

2 f, lea (2, 1) Fz()’(t))dt) ds = W (x)
Y00 = W) = s [ e = )% (a()y(0)ds = s f e = )% (A [y eae ) Fa (0t +

22 [ a2, 1) Fz(y(t))dt) ds ®)

r (06)

where

x)
W(x )_zy © x* + f (x —s5)*1g(s)ds

T (@)
3.1 Uniqueness of the method

In order to establish the method’s uniqueness, we provide the following hypothesis:
H.: There exist constants L4, L, > 0, such that for any y,,y, € C([0,1], R)

|[F1(y1) — F1(¥2)| < La|ys — y2|

and
|[F2(y1) — F2(¥2)| < L2|ys — y2|

Hz: There exist two functions k7 and k5 € C([0,1] x [0,1],R) in the set of all positive functions such that

b
ki = maxzeo|a] f Ik, )| dt < o0
0

1
k3 = maxyero|a] f lkCx, O)ldt < o
0

Hs: The function g € R is continuous such that
q"=maxye[o,1)1q(x)|
Theorem 2. Let T: X — X be the mapping defined by equation (8). Then T is a strict contraction if

(q*+k{+k;) 1
'a+1)

Proof.
Let y;1(x), y2(x)eX. Applying Banach fixed point theorem to equation (8)
(Ty) () = W) = 7 [ (& = )77 (q)ya(0)ds = 1 Jo G = )% (A ) ka0 FOn (©)de +
22 Jy ka2, 6) Fa(y1(6))dt ) ds ©)

and



G. Ajileye et al. / Songklanakarin J. Sci. Technol. 46 (1), 8-15, 2024 11

(Ty,)(x) = W(x) — e )f (x — )1 (q()y1(x))ds — mf (x —s)? (Alf ki(x,t) F1(y,(t))dt +

2 fy ka(x,6) Fa(y,(6))dt ) ds (10)

Subtracting equation (10) from equation (9) gives

() = 70 = s [ = 9 [10(0200 = )Jds + s [ (=)
0 0
(2 5 b (6,0 Fa2(8) = ya () dt + 25 J ey (x,8) Fa(02(8) = y2 (£))dt) ds

Taking the absolute value of both sides gives

(@706~ 13001 - ) =9 a0 - m@)as+
=[50 = )% (12a] f s G, O1F1 (72(6) = y1(O)]de + |2a] f o (x, Ol IF2(v2() = y2 ()]t ) ds

F(a)

q*+ki+k;
r(a+1)

Taking the maximum of both sides and applying H; — Hs gives d(Ty4,Ty,) < ( ) d(y1,y2)

Therefore T is a strict contraction mapping.

Theorem 3. (Continuity) Let (X, d) be a metric space and T: X — X be a mapping, and let y,, (x), y(x)eX and the ‘lEi[l’(}’ll] Yn(x) =
x€[0,
y(x). Then T is continuous if d(Ty,, Ty) = 0 as n — .

Proof.

[(Ty)(x) = (Ty)(x)| = %f (x = )* g (y(x) =y ()| ds +

i do G = )77 (Il [ s G, O1F1 /() = y (@)t + 1221 [ o G, O IF2((8) = ya (D) dt ) ds

[(Ty)(x) = (Ty)(x)| < m[ (x—s)*t m[gxllq(x)l max, |(y () =y (x))|ds +

I"(a)f (x —s)* 1 (|/11| max f |k (x, t)I max |Fi(y(t) — yn(t))ldt + IAZI max f [k, (x, )] max IFZ(y(t) -

y(©)ldt ) ds
q +ki+k;

<|———=
aryy 1y2) < (Tt ) 40wy
Since d(y,,y) = 0 asn - o, then d(Ty,, Ty) - 0 as n — ., therefore T is continuous.

3.2 Method of solution
Let the solution of equation (1) and equation (2) be approximated by

y(x) = Y=o amx™ = B(x)A (11)
where @(x) = [1 x x2 --- xM], A=[ag a;---ay]"

Substituting equation (11) into equation (8) gives

O(A = W) = 75 7Gx = ) (@EIBEIANS — s [ G = ) (A [ Ka ) Fa (B0 A) e +
2 Jy ka2, 6) F(@(0)A)dt ) ds (12)

Collocating at x; in equation (12) gives

DA = W) = 15 Jy (0 = )" ()G ds — 7 [ e = )77 (2 f} ka, ) Fa(@(D)A)lt +
22 [ ko (x, 1) Fz((b(t)A)dt) ds (13)

Factorizing the value of A from equation (13) gives
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U GO R (G (¢) A)de +
D4 — [F(x —s)e 1 VAYds +—— [*(x — s)et 4 ds|A=Ww(x) (14
K@(xl)ﬂ(a)fo(x )% (qBG)A)ds + s [ e = ) (Az ot PO | © W (x) (14)
Equation (14) can be in the form
J(x)A =W (x;) (15)

where

JG) = B0x) + % fo “( = )91 (()B(x)A)ds

. x( )“‘1</1 O F o()A)dt + 2 o0 F P()A)dt | d
+mj; X =S 1.[) 1(%, t) F1( ) +2J; 2(x,t) Fa( ))s

We solve the system of equations (15) for the unknown values and substitute the results into the approximate solution to
obtain the numerical result.

3.3 Convergence of the method

Theorem 4. (Convergence of method) Let (X, d) be a metric space and T: X — X be a continuous mapping and yy (x), yy_1 (x)eX
be approximate solutions of equation (7). Let Ay (x) = |yn(x) — yn_1(x)|. If limy_o(4n(x)) — 0, then the method converges
to an exact solution.

Proof.

Let y,(x) and y,(x) be approximated by yy(x) = X¥X_j a,x™ = d(x)A and yy_, (x) = M a,x™ = 0(x)B
Substituting the approximate solution into equation (8) gives

Tyn () = W) = 1 o (= )7 (qBEIAds = 1= [y G = )% (A [ ka(x, ) Fa(B()A)de +

22 J, ka2, 6) F2(@(x)A)dt ) ds

Similarly

Tyn-1(0) = W) = o= [ (& = )% (q(x)@ (0 B)ds —

22 [y ko, £) Fo(@(x)B)dt ) ds

Ty () — (TY)()] = ﬁ [[=9t aociB - alas
0

.
ra)

[5G = )% (2 [ kaGo, £ Fa (0GBt +

1 x x4
+— f (= )@t (2 K EOF1Ig(x)|B - Aldt + 22 o k2D p203(x) | B — Aldt) ds
I'(a) Jg
Since x¢[0,1] and |B — A| # 0, hence limy_,4x(x) = 0.
Therefore, the method converges.

3.4 Numerical examples

In this section, we provide numerical illustrations to assess the applicability and accuracy of the method. Let the
approximate and exact solutions be y,, (x) and y(x) respectively. Errory = |y, (x) — y(x)|.

Example 1. (Hou et al., 2021) Consider the first order V-FIDE

1
') +y(x) +3 [y xy (O)dt =5 [ty (E)dt = 2x + 22 + —x® —— (16)

32
subject to initial condition

y(0)=0
The exact solution is y(x) = x?

Solution 1.
The approximate solution of equation (16) at N=5 gives

y% = —2.546574062734 x 10715 — 2.842170943040 X 10" *x + 1.000000000000x2 + 1.818989403546
x 107*%x® + 1.818989403546 x 10-2x*
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Example 2. (Hou et al., 2021) Consider the first order V-FIDE

y'(x) +y(x)—2 f;c sin(x) y*(t)dt = cos(x) + (1 — x)sin(x) + cos(x)sin*(x) (17)
subject to initial condition

y(0) =0
The exact solution is y(x) = sin(x)

Solution 2.
The approximate solution of equation (17) at N=6 gives

Y6 = —4.737052972000 X 10~*° + 1.000001048642x — 0.1394239556e — 2x* — 0.155098519841x> —
0.36024075147¢ — 1x* + 0.54202200699¢ — 1x° — 0.10605020725e — 1x°.

Example 3. (Hou et al., 2021) Consider the first order V-FIDE

V) + [y 0 = 2) dt = 225 (18)
subject to initial condition

y(0)=0
The exact solution is y(x) = x*

Solution 3.
The approximate solution of equation (18) at N=4 gives

ys = —1.110223025000 x 10*°x + 1.000000000000x* — 3.552713679000 x 10-*5x*,
4. Results and Discussion

This section discusses the numerical results in the solved examples using the derived numerical approach. The result
obtained for Example 1, as shown in Table 1, is that the approximate solution at N = 5 namely ys = —2.546574062734 x
10715 — 2.842170943040 x 10**x + 1.000000000000x? + 1.818989403546 x 10-2x° + 1.818989403546 x 10 *2x*.

The numerical result converged to an exact solution, and this confirms that our method performed better than the method
proposed by (Hou et al., 2021).

Table 1. Exact and approximate solutions, and absolute error for Example 1

X Exact Our methodn-=s Errors (Hou et al., 2021) Error;,
0.2 0.040000000000 0.040000000000 0.00 9.3974e-5
04 0.160000000000 0.160000000000 0.00 1.9813e-4
0.6 0.360000000000 0.360000000000 0.00 2.8891e-4
0.8 0.640000000000 0.640000000000 0.00 4.0786e-4
1.0 1.000000000000 1.000000000000 0.00 5.1647e-4

In numerical Example 2, as shown in Table 2, the approximate solutionat N = 6isys = —4.737052972000 x 10°*° +
1.000001048642x — 0.1394239556e — 2x* — 0.155098519841x® — 0.36024075147e — 1x* + 0.54202200699¢ — 1x° —
0.10605020725¢ — 1x°. The numerical result is better than the result obtained by (Hou et al., 2021)at N = 12.

Table 2. Exact and approximate solutions, and absolute error for Example 2

X Exact Our methodn-6 Errors (Hou et al., 2021) Errory,
0.2 0.198669330800 0.198662679000 6.651800e-6 8.53966e-5
0.4 0.389418342300 0.389440411500 2.20692e-5 1.79180e-4
0.6 0.564642473400 0.564648677600 4.062042e-5 2.5968e-4
0.8 0.717356090900 0.717323556600 2.5674657-5 3.71839%-4
1.0 0.841470984800 0.841481394400 9.6104096e-5 5.01073e-4
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The approximate solution obtained

in Example 3 at

N =4 is y,=-1110223025000 x 10-6x +

1.000000000000x* — 3.552713679000 x 10-*°x*. The numerical result converged to an exact solution, and this confirms that
our method performed better than the method proposed by (Hou et al., 2021), as shown in Table 3.

Table 3.  Exact and approximate solutions, and absolute error for Example 3
X Exact Our methody-4 Errors (Hou et al., 2021) Error,
0.2 0.040000000000 0.040000000000 0.00 4.6875e-17
0.4 0.160000000000 0.160000000000 0.00 2.77556e-17
0.6 0.360000000000 0.360000000000 0.00 1.11022e-16
0.8 0.640000000000 0.640000000000 0.00 2.22045e-16
1.0 1.000000000000 1.000000000000 0.00 1.11022e-15

5. Conclusions

For the numerical solution of the V-FIDEs, the
collocation approach was investigated in this paper. This
method is simple to apply, reliable, and efficient. For all
computations in this work, Maple 18 was employed.
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