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Abstract 
 

We are completely aware of the fact that ternary algebraic structures in some way naturally occur in diverse fields of 

theoretical and mathematical physics, computer science, especially in ternary operators in Java and Python, ternary logic applied 

for digital signal processing, and musical systems for song composition. The primary aim of this research is to examine ternary 

semigroups in the context of hybrid quasi-ideals and hybrid A-ideals. Different features of hybrid quasi-ideals and hybrid A-ideals 

in the ternary semigroup are discussed. In addition, the idea of minimal hybrid A-ideals of ternary semigroups is defined. 
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1. Introduction  
 

Ternary algebraic structures spontaneously occur in a 

number of areas of theoretical and mathematical physics. 

Ternary semigroups have applications and implications in 

various areas of mathematics and beyond. Dixit and Dewan 

(1995) presented quasi-ideals in ternary semigroups and 

studied their properties. Grosek and Satko (1980) proposed the 

notion of an A-ideal in semigroups. Numerous academics have 

looked into the ideas of ternary semigroups (Dutta, Kar, & 

Maity, 2008; Kar & Maity, 2007; Lehmer, 1932: Los, 1955; 

Santigo, 1990; Sioson, 1965). 

Using a parallel approach to set theory, Zadeh (1965) 

proposed an idea of fuzzy subsets and investigated its 

properties. This idea was applied in group theory and 

semigroup theory by Rosenfeld (1975).  Fuzzy ideals were first 

proposed in ternary semigroups by Kar and Sarkar (2012) who 

examined their associated features. Kar and Sarkar (2012) 

presented both the fuzzy quasi-ideal and fuzzy bi-ideal of a 

ternary semigroup and investigated the associated features of 

these two ternary semigroup subsystems. Suebsung, 

Wattanatripop,  and  Chinram  (2019)  defined  and  investigated 

 
several characteristics of A-ideals and fuzzy A-ideals in ternary 

semigroups.  Many researchers have applied the concepts in 

decision making problems (Ozlu, S. 2022, 2022, 2023, 2023). 
Molodtsov (1999) proposed soft set theory that offers 

a novel method for dealing with unpredictability and is free 

from the issues that have demolished the traditional theoretical 

methods. Jun, Sang, and Muhiuddin (2018) compared the 

relationships among soft sets and fuzzy sets. The ideas of 

hybrid sub-semigroups and hybrid ideals in semigroups were 

presented by Anis, Khan, and Jun (2017), and a number of 

features were examined. Elavarasan, Porselvi, and Jun (2019) 

were the first to discuss hybrid generalized bi-ideals in 

semigroups. Modules over semi rings were examined in terms 

of hybrid structure by Muhiuddin, Catherine Grace John, 

Elavarasan, Jun, and Porselvi (2022). The concept of hybrid 

interior ideals and bi-ideals in ternary semigroups are proposed 

by Catherine Grace John, Deepika, and Elavarasan (2023) who 

also examined their features.  

The goal of the current work is to offer hybrid quasi-

ideals and hybrid A-ideals in ternary semigroups and to use 

these ideals to explore the characteristics of ternary 

semigroups. 

 



M. Deepika et al. / Songklanakarin J. Sci. Technol. 46 (1), 16-23, 2024   17 

 

2. Preliminaries 
 

A nonempty set 𝐷 is called a ternary semigroup if there is a ternary operation  𝐷 × 𝐷 × 𝐷 → 𝐷 written as (𝑔, 𝑚, 𝑏) ↣
𝑔𝑚𝑏 satisfying the following identity 

 
(𝑔𝑚𝑏)𝑓𝑒 = 𝑔(𝑚𝑏𝑓)𝑒 = 𝑔𝑚(𝑏𝑓𝑒),  for all 𝑔, 𝑚, 𝑏, 𝑑, 𝑒 ∈ 𝐷. 

𝐷 will stand for a ternary semigroup throughout this paper unless otherwise stated. 

 

Definition 2.1. Dixit and Dewan (1995) Let 𝑅(≠ ∅) ⊆ 𝐷. Then  

(𝑖)  𝑅 is a ternary subsemigroup of 𝐷 if 𝑅𝑅𝑅 ⊆ 𝑅.  
(𝑖𝑖)  𝑅 is a left ideal of 𝐷 if 𝐷𝐷𝑅 ⊆ 𝑅. 
(𝑖𝑖𝑖) 𝑅 is a right ideal of 𝐷 if 𝑅𝐷𝐷 ⊆ 𝑅. 
(𝑖𝑣)  𝑅 is a lateral ideal of 𝐷 if 𝐷𝑅𝐷 ⊆ 𝑅. 

If 𝑅 is a left, right and lateral ideal of 𝐷, then it is called an ideal of 𝐷. 

 

Definition 2.2.  Dixit and Dewan (1995) Let 𝑅(≠ ∅) ⊆ 𝐷.  Then 𝑅 is a quasi-ideal of 𝐷 if (𝑅𝐷𝐷 ∩ 𝐷𝑅𝐷 ∩ 𝐷𝐷𝑅) ⊆ 𝑅 and   
(𝑅𝐷𝐷 ∩ 𝐷𝐷𝑅𝐷𝐷 ∩ 𝐷𝐷𝑅) ⊆ 𝑅 and the above can be written as follows: (𝑅𝐷𝐷 ∩ (𝐷𝑅𝐷 ∪ 𝐷𝐷𝑅𝐷𝐷) ∩ 𝐷𝐷𝑅) ⊆ 𝑅. 

 

Definition 2.3 Dutta, Kar, and Maity (2008) The element 𝑔 ∈ 𝐷 is a ternary idempotent if 𝑔3 = 𝑔. 
 

Definition 2.4 Grosek and Satko, (1980) Let 𝑅(≠ ∅) ⊆ 𝐷.  Then  
(𝑖)  𝑅 is a left A-ideal of 𝐷 if 𝑔𝑔𝑅 ∩ 𝑅 ≠ 𝜙, ∀ 𝑔 ∈ 𝐷. 
(𝑖𝑖) 𝑅 is a right A-ideal of 𝐷 if 𝑅𝑔𝑔 ∩ 𝑅 ≠ 𝜙, ∀ 𝑔 ∈ 𝐷. 
(𝑖𝑖𝑖) 𝑅 is a lateral A-ideal of 𝐷 if 𝑔𝑅𝑔 ∩ 𝑅 ≠ 𝜙, ∀ 𝑔 ∈ 𝐷. 
If 𝑅 is a left, right, and lateral A-ideal of 𝐷, then R is an A-ideal of 𝐷. 

 

3. Hybrid Structures in Ternary Semigroup 
 

We give a few basic definitions of hybrid structures in this part, which are required to back up the key conclusions. In 

the explanation that follows, the symbol 𝐼 stands for unit interval [0, 1], 𝐻(𝐷) stands for the gathering of all hybrid structures in 

𝐷, and 𝑃(𝑊) stands for all subsets of the universal set 𝑊. 

 

Definition 3.1. Anis, Khan, and Jun (2017) A hybrid structure in 𝐷 over W is a mapping  

 

𝑡̃𝛿 = (𝑡̃, 𝛿) ∶ 𝐷 → 𝑃(𝑊) × 𝐼, 𝑔 ↦ (𝑡̃(𝑔), 𝛿(𝑔)) 

where 𝑡̃ ∶ 𝐷 → 𝑃(𝑊) and 𝛿 ∶ 𝐷 → 𝐼   are mappings. 

To establish a partial order relation ≪ in 𝐻(𝐷), we state the following: 

 

(∀    𝑡̃𝛿 , 𝑦̃𝜚 ∈ 𝐻(𝐷)) (𝑡̃𝛿 ≪  𝑦̃𝜚 ⟺ 𝑡̃ ⊆̃ 𝑦̃, 𝛿 ≥ ϱ ) 

where 𝑡̃ ⊆̃ 𝑦̃, means 𝑡̃(𝑔)  ⊆ 𝑦̃(𝑔) and 𝛿 ≥ ϱ  means 𝛿(𝑔) ≥ ϱ(g)  ∀ 𝑔 ∈ 𝐷.  Then, the set  (𝐻(𝐷), ≪) is a partially ordered set. 

 

Definition 3.2. Anis, Khan, and Jun (2017) Let 𝑦̃𝜚, 𝑘̃𝜏 , 𝑡̃𝛿  ∈ 𝐻(𝐷).   Then the hybrid product of 𝑦̃𝜚  ⊙ 𝑘̃𝜏 ⊙   𝑡̃𝛿  is defined as 

follows. For any 𝑔 ∈ 𝐷, 

(𝑦̃ ∘̃ 𝑘̃ ∘̃ 𝑡̃)(𝑔) = {
⋃ {𝑦̃(𝑚) ∩ 𝑘̃(𝑛) ∩ 𝑡̃(𝑓)}  𝑖𝑓 𝑔 = 𝑚𝑛𝑓

𝑔=𝑚𝑛𝑓

∅                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

(𝜚 ∘̃ 𝜏 ∘̃ 𝛿)(𝑔) = {
⋀ {𝜚(𝑚) ∨ 𝜏(𝑛) ∨ 𝛿(𝑓)}

𝑔=𝑚𝑛𝑓

  𝑖𝑓 𝑔 = 𝑚𝑛𝑓

1                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑓𝑜𝑟  𝑚, 𝑛 , 𝑓 ∈ 𝐷. 
 

Definition 3.3. Anis, Khan, and Jun (2017) Let 𝑦̃𝜚, 𝑡̃𝛿  ∈ 𝐻(𝐷).   Then the notation  𝑦̃𝜚 ⋒ 𝑡̃𝛿  denotes the hybrid intersection of  𝑦̃𝜚 

and 𝑡̃𝛿 , its hybrid structure defined by 

 

𝑦̃𝜚 ⋒ 𝑡̃𝛿 ∶ 𝐷 → 𝑃(𝑊) × 𝐼, 𝑔 ↦ ((𝑦̃ ∩̃ 𝑡̃)(𝑔), (𝜚 ∨ 𝛿)(𝑔)) 

where   𝑦̃ ∩̃ 𝑡̃ ∶ 𝐷 → 𝑃(𝑊), 𝑔 ↦  𝑦̃(𝑔) ∩ 𝑡̃(𝑔), 
              𝜚 ∨ 𝛿: 𝐷 → 𝐼, 𝑔 ↦  𝜚(𝑔) ∨ 𝛿(𝑔) for all 𝑔 ∈ 𝐷. 
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Definition 3.4. Anis, Khan, and Jun (2017) Let 𝑦̃𝜚, 𝑡̃𝛿  ∈ 𝐻(𝐷).   Then the notation  𝑦̃𝜚 ⋓ 𝑡̃𝛿  denotes the hybrid union of  𝑦̃𝜚 and 

𝑡̃𝛿, its hybrid structure defined by 

𝑦̃𝜚 ⋓ 𝑡̃𝛿 ∶ 𝐷 → 𝑃(𝑊) × 𝐼, 𝑔 ↦ ((𝑦̃ ∪̃ 𝑡̃)(𝑔), (𝜚 ∧ 𝛿)(𝑔)) 

where   𝑦̃ ∪̃ 𝑡̃ ∶ 𝐷 → 𝑃(𝑊), 𝑔 ↦  𝑦̃(𝑔) ∪ 𝑡̃(𝑔), 
              𝜚 ∧ 𝛿: 𝐷 → 𝐼, 𝑔 ↦  𝜚(𝑔) ∧ 𝛿(𝑔) for all 𝑔 ∈ 𝐷. 
 

Definition 3.5. Anis, Khan, and Jun (2017) For 𝑡̃𝛿  ∈ 𝐻(𝐷) and 𝑅 ∈ 𝑃(𝑊)\{𝜙}, the characteristic hybrid structure 𝜒𝑅(𝑡̃𝛿) in 𝐷 

over 𝑊 is represented by 𝜒𝑅(𝑡̃𝛿) = (𝜒𝑅(𝑡̃), 𝜒𝑅(𝛿)), where 

 

𝜒𝑅(𝑡̃): 𝐷 → 𝑃(𝑊), 𝑔 ↦ {
𝑊   𝑖𝑓  𝑔 ∈ 𝑅

   𝜙     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
    𝜒𝑅(𝛿): 𝐷 → 𝐼, 𝑔 ↦ {

0   𝑖𝑓  𝑔 ∈ 𝑅
   1   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝜒𝐷(𝑡̃𝛿) is called the identity hybrid structure in 𝐷 over 𝑊 if 𝜒𝐷(𝑡̃𝛿) = 𝐷, i.e., 𝜒𝐷(𝑡̃)(𝑔) = 𝑊, 𝜒𝐷(𝛿)(𝑔) = 0. 
 

Definition 3.6. Catherine Grace John et al., (2023) A hybrid structure  𝑡̃𝛿  is a hybrid subsemigroup of 𝐷 if 

 

(∀ 𝑚, 𝑛, 𝑓 ∈ 𝐷) (
𝑡̃(𝑚𝑛𝑓) ⊇ 𝑡̃(𝑚) ∩ 𝑡(𝑛) ∩ 𝑡(𝑓)

𝛿(𝑚𝑛𝑓) ≤ 𝛿(𝑚) ∨ 𝛿(𝑛) ∨ 𝛿(𝑓)
). 

 

Definition 3.7.  Catherine Grace John et al., (2023) A hybrid structure  𝑡̃𝛿  is a hybrid ideal of 𝐷 if it fulfills the following conditions: 

(𝐴1) (∀ 𝑚, 𝑛, 𝑓 ∈ 𝐷) (
𝑡̃(𝑚𝑛𝑓) ⊇ 𝑡̃(𝑓)

𝛿(𝑚𝑛𝑓) ≤ 𝛿(𝑓)
). 

(𝐴2) (∀ 𝑚, 𝑛, 𝑓 ∈ 𝐷) (
𝑡̃(𝑚𝑛𝑓) ⊇ 𝑡̃(𝑚)

𝛿(𝑚𝑛𝑓) ≤ 𝛿(𝑚)
). 

(𝐴3) (∀ 𝑚, 𝑛, 𝑓 ∈ 𝐷) (
𝑡̃(𝑚𝑛𝑓) ⊇ 𝑡̃(𝑛)

𝛿(𝑚𝑛𝑓) ≤ 𝛿(𝑛)
). 

Note that 𝑡̃𝛿 is referred to as a hybrid left ideal of 𝐷 if it meets requirement (A1), 𝑡̃𝛿 is referred to as a hybrid right ideal 

of 𝐷 if it meets requirement (A2), and 𝑡̃𝛿 is referred to as a hybrid lateral ideal of 𝐷 if it meets requirement (A3). 

𝑡̃𝛿 is a two-sided hybrid ideal if it is meets requirements (A1) and (A2).  

 

Definition 3.8. Anis, Khan, and Jun (2017) Let 𝑡̃𝛿  ∈ 𝐻(𝐷).  Then for any Γ ∈ 𝑃(𝑊) and 𝜉 ∈ 𝐼, the set 

 

𝑡̃𝛿[Γ, 𝜉] ≔ {𝑔 ∈ 𝐷: 𝑡̃(𝑔) ⊇ Γ  and  δ(g) ≤ 𝜉} 

is called the  [Γ, 𝜉] − ℎ𝑦𝑏𝑟𝑖𝑑 𝑐𝑢𝑡 in 𝐷 over 𝑊. 

 

4. Hybrid Quasi-Ideals in Ternary Semigroup 
 

Fuzzy quasi-ideals in ternary semigroup were initially discussed by Dixit and Dewan (1995). We define hybrid quasi-

ideals in  𝐷 over 𝑊 as follows: 

 

Definition 4.1. Let 𝑦̃𝜚 ∈ 𝐻(𝐷). Then  𝑦̃𝜚  of  𝐷 is a hybrid quasi-ideal if it meets the conditions below: 

 

(𝑖)      (𝐷 ⊙ 𝐷 ⊙ 𝑦̃𝜚 ) ⋒ (𝐷 ⊙ 𝑦̃𝜚  ⊙ 𝐷) ⋒ (𝑦̃𝜚  ⊙ 𝐷 ⊙ 𝐷) ≪ 𝑦̃𝜚 , 

(𝑖𝑖)     (𝐷 ⊙ 𝐷 ⊙ 𝑦̃𝜚 ) ⋒ (𝐷 ⊙ 𝐷 ⊙ 𝑦̃𝜚  ⊙ 𝐷 ⊙ 𝐷) ⋒ (𝑦̃𝜚  ⊙ 𝐷 ⊙ 𝐷) ≪ 𝑦̃𝜚 . 

 

Example 4.2. Take 𝐷 = {𝑖, 0, −𝑖} as a ternary semigroup with common complex multiplication. Define the hybrid structure 𝑦̃𝜚  in 

𝐷 over the set 𝑊 = {𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5 } by: 

 

𝑦̃(𝑔) = { 
{𝑚1, 𝑚4, 𝑚5}    𝑖𝑓  𝑔 = 𝑖, −𝑖

{𝑚1, 𝑚2, 𝑚4}       𝑖𝑓  𝑔 = 0,
   and 𝜚(𝑔) = {

         0.5     𝑖𝑓  𝑔 = 𝑖, −𝑖
0.3  𝑖𝑓 𝑔 = 0.

 

Then 𝑦̃𝜚 is a hybrid quasi-ideal. It is clear that every hybrid ideal is a hybrid quasi-ideal of  𝐷. 

The following example demonstrate that, a hybrid quasi-ideal need not always be a hybrid ideal of 𝐷. 

 

Example 4.3. Let 𝐷 = {𝑖, 0, −𝑖} be a ternary semigroup under complex multiplication and let 𝑦̃𝜚  be a hybrid structure in 𝐷 over 

the set 𝑊 = {𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5 } by: 

 

𝑦̃(𝑔) = { 
{𝑚1, 𝑚4, 𝑚5 }    𝑖𝑓  𝑔 = 𝑖, −𝑖

{𝑚1, 𝑚4}      𝑖𝑓  𝑔 = 0,
   and 𝜚(𝑔) = {

         0.4     𝑖𝑓  𝑔 = 𝑖, −𝑖
0.6  𝑖𝑓 𝑔 = 0.

 

Then 𝑦̃𝜚 of 𝐷 is a hybrid quasi-ideal, but not a hybrid ideal of 𝐷 because 𝑦̃(−𝑖 × 0 × 𝑖) ⊉ 𝑦̃(−𝑖) and 𝜚(−𝑖 × 0 × 𝑖) ≰

𝜚(−𝑖); and 𝑦̃(−𝑖 × 0 × 𝑖) ⊉ 𝑦̃(𝑖) and 𝜚(−𝑖 × 0 × 𝑖) ≰ 𝜚(𝑖). 
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Theorem 4.4.  For 𝑡̃𝛿 , 𝑦̃𝜚 ∈ 𝐻(𝐷)  and 𝐵, 𝐹, 𝑁 ∈ 𝑃(𝑊)\{∅},  the conditions below hold: 

 
(𝑖)      𝜒𝐵(𝑡̃𝛿)  ⋒  𝜒𝐹(𝑡̃𝛿)  ⋒ 𝜒𝑁(𝑡̃𝛿) =  𝜒𝐵∩𝐹∩𝑁(𝑡̃𝛿) . 
(𝑖𝑖)     𝜒𝐵(𝑡̃𝛿)  ⊙   𝜒𝐹(𝑡̃𝛿)  ⊙  𝜒𝑁(𝑡̃𝛿) =  𝜒𝐵𝐹𝑁(𝑡̃𝛿) . 

 

Proof: (𝑖)  Let 𝑔 ∈ 𝐷.Then (𝜒𝐵(𝑡̃) ∩̃ 𝜒𝐹(𝑡̃) ∩̃ 𝜒𝑁(𝑡̃))(𝑔) = 𝜒𝐵(𝑡̃)(𝑔) ∩ 𝜒𝐹(𝑡̃)(𝑔) ∩ 𝜒𝑁(𝑡̃)(𝑔) and (𝜒𝐵(𝛿) ∨ 𝜒𝐹(𝛿) ∨ 𝜒𝑁(𝛿))(𝑔) 

= 𝜒𝐵(𝛿)(𝑔) ∨ 𝜒𝐹(𝛿)(𝑔) ∨ 𝜒𝑁(𝛿)(𝑔). 

If 𝑔 ∈ 𝐵 ∩ 𝐹 ∩ 𝑁,  then 𝜒𝐵∩𝐹∩𝑁(𝑡̃)(𝐺) = 𝑊 = 𝜒𝐵(𝑡̃)(𝑔) ∩ 𝜒𝐹(𝑡̃)(𝑔) ∩ 𝜒𝑁(𝑡̃)(𝑔) =  (𝜒𝐵(𝑡̃) ∩̃ 𝜒𝐹(𝑡̃) ∩̃ 𝜒𝑁(𝑡̃))(𝑔) and 

𝜒𝐵∨𝐹∨𝑁(𝛿)(𝑔) = 0 = 𝜒𝐵(𝛿)(𝑔) ∨ 𝜒𝐹(𝛿)(𝑔) ∨ 𝜒𝑁(𝛿)(𝑔) = (𝜒𝐵(𝛿) ∨ 𝜒𝐹(𝛿) ∨ 𝜒𝑁(𝛿))(𝑔). 

If 𝑔 ∉ 𝐵 ∩ 𝐹 ∩ 𝑁,  then 𝜒𝐵∩𝐹∩𝑁(𝑡̃)(𝐺) = ∅ = 𝜒𝐵(𝑡̃)(𝑔) ∩ 𝜒𝐹(𝑡̃)(𝑔) ∩ 𝜒𝑁(𝑡̃)(𝑔) =  (𝜒𝐵(𝑡̃) ∩̃ 𝜒𝐹(𝑡̃) ∩̃ 𝜒𝑁(𝑡̃))(𝑔) and 

𝜒𝐵∨𝐹∨𝑁(𝛿)(𝑔) = 1 = 𝜒𝐵(𝛿)(𝑔) ∨ 𝜒𝐹(𝛿)(𝑔) ∨ 𝜒𝑁(𝛿)(𝑔) = (𝜒𝐵(𝛿) ∨ 𝜒𝐹(𝛿) ∨ 𝜒𝑁(𝛿))(𝑔). So, 𝜒𝐵(𝑡̃𝛿) ⋒ 𝜒𝐹(𝑡̃𝛿) ⋒ 𝜒𝑁(𝑡̃𝛿) =

𝜒𝐵∩𝐹∩𝑁(𝑡̃𝛿). 
(𝑖𝑖) Let 𝑔 ∈ 𝐷. If 𝑔 = 𝑥𝑚𝑝 for some 𝑥, 𝑚, 𝑝 ∈ 𝐷, then 

 

(𝜒𝐵(𝑡̃)𝑜̃𝜒𝐹(𝑡̃)𝑜̃𝜒𝑁(𝑡̃))(𝑔) = ⋃ {𝜒𝐵(𝑡̃)(𝑥) ∩ 𝜒𝐹(𝑡̃)(𝑚) ∩ 𝜒𝑁(𝑡̃)(𝑝)}

𝑎=𝑥𝑚𝑝

, 

(𝜒𝐵(𝛿)𝑜̃𝜒𝐹(𝛿)𝑜̃𝜒𝑁(𝛿))(𝑔) = ⋀ {𝜒𝐵(𝛿)(𝑥) ∨ 𝜒𝐹(𝛿)(𝑚) ∨ 𝜒𝑁(𝛿)(𝑝)}.

𝑔=𝑥𝑚𝑝

 

 

Case 1: If there exists no 𝑥 ∈ 𝐵, 𝑚 ∈ 𝐹, 𝑝 ∈ 𝑁 such that 𝑔 = 𝑥𝑚𝑝, then 𝑔 ∉ 𝐵𝐹𝑁 and hence  (𝜒𝐵(𝑡̃)𝑜̃𝜒𝐹(𝑡̃)𝑜̃𝜒𝑁(𝑡̃))(𝑔) = ∅ =

𝜒𝐵𝐹𝑁(𝑡̃)(𝑔) and (𝜒𝐵(𝛿)𝑜̃𝜒𝐹(𝛿)𝑜̃𝜒𝑁(𝛿))(𝑔) = 1 = 𝜒𝐵𝐹𝑁(𝛿)(𝑔). 

 

Case 2: If there exists 𝑔 such that 𝑔 = 𝑛𝑞𝑟, where 𝑛 ∈ 𝐵, 𝑞 ∈ 𝐹, 𝑟 ∈ 𝑁, 𝑡hen 𝑔 ∈ 𝐵𝐹𝑁 and  𝜒𝐵(𝑡̃)(𝑛) = 𝜒𝐹(𝑡̃)(𝑞) = 𝜒𝑁(𝑡̃)(𝑟) =
𝜒𝐵𝐹𝑁(𝑡̃) = 𝑊 and 𝜒𝐵(𝛿) =  𝜒𝐹(𝛿) = 𝜒𝑁(𝛿) = 𝜒𝐵𝐹𝑁(𝛿) = 0. Therefore 

 

(𝜒𝐵(𝑡̃)𝑜̃𝜒𝐹(𝑡̃)𝑜̃𝜒𝑁(𝑡̃))(𝑔) = ⋃ {𝜒𝐵(𝑡̃)(𝑥) ∩ 𝜒𝐹(𝑡̃)(𝑚) ∩ 𝜒𝑁(𝑡̃)(𝑝)}

𝑔=𝑥𝑚𝑝

  

                                                 ⊇  𝜒𝐵(𝑡̃)(𝑛) ∩ 𝜒𝐹(𝑡̃)(𝑞) ∩ 𝜒𝑁(𝑡̃)(𝑟) 

                                                 = 𝑊 =  𝜒𝐵𝐹𝑁(𝑡̃)(𝑔),   

(𝜒𝐵(𝛿)𝑜̃𝜒𝐹(𝛿)𝑜̃𝜒𝑁(𝛿))(𝑔) = ⋀ {𝜒𝐵(𝛿)(𝑥) ∨ 𝜒𝐹(𝛿)(𝑚) ∨ 𝜒𝑁(𝛿)(𝑝)}

𝑔=𝑥𝑚𝑝

 

                                             ≤ 𝜒𝐵(𝛿)(𝑛) ∨ 𝜒𝐹(𝛿)(𝑞) ∨ 𝜒𝑁(𝛿)(𝑟) 

                                                   = 0 = 𝜒𝐵𝐹𝑁(𝛿)(𝑔). 

For 𝑔 ∈ 𝐷, if 𝑔 ≠ 𝑥𝑚𝑝, for any 𝑥, 𝑚, 𝑝 ∈ 𝐷, then (𝜒𝐵(𝑡̃)𝑜̃𝜒𝐹(𝑡̃)𝑜̃𝜒𝑁(𝑡̃))(𝑔) = ∅ = 𝜒𝐵𝐹𝑁(𝑡̃)(𝑔) and  

(𝜒𝐵(𝛿)𝑜̃𝜒𝐹(𝛿)𝑜̃𝜒𝑁(𝛿))(𝑔) = 1 = 𝜒𝐵𝐹𝑁(𝛿)(𝑔). 
From the above two cases it follows that 𝜒𝐵(𝑡̃𝛿) ⊙ 𝜒𝐹(𝑡̃𝛿) ⊙ 𝜒𝑁(𝑡̃𝛿) = 𝜒𝐵𝐹𝑁(𝑡̃𝛿). 

 

Theorem 4.5. For   𝑦̃𝜚 ∈ 𝐻(𝐷) and 𝑅 ∈ 𝑃(𝑊)\{∅}, the following conditions are equivalent: 

(𝑖)   𝜒𝑅(𝑦̃𝜚 )  of 𝐷 is a hybrid quasi-ideal, 

(𝑖𝑖)   𝑅  of 𝐷 is a quasi-ideal. 

 

Proof:  (𝑖) ⟹ (𝑖𝑖) Consider  𝜒𝑅(𝑦̃𝜚 ) of 𝐷 is a quasi-ideal and 𝑔 ∈ (𝐷𝐷𝑅) ∩ (𝐷𝑅𝐷) ∩ (𝑅𝐷𝐷). Now  

 

𝜒𝑅(𝑦̃) (𝑔) 

⊇ [( 𝜒𝐷(𝑦̃) ∘̃ 𝜒𝐷(𝑦̃) ∘̃ 𝜒𝑅(𝑦̃)) ∩ (𝜒𝐷(𝑦̃) ∘̃ 𝜒𝑅(𝑦̃) ∘̃ 𝜒𝐷(𝑦̃)) ∩

                                                                                (𝜒𝑅(𝑦̃) ∘̃ 𝜒𝐷(𝑦̃)   ∘̃ 𝜒𝐷(𝑦̃))](𝑔)  

 ⊇ [𝜒(𝐷𝐷𝑅)(𝑦̃) ∩ 𝜒(𝐷𝑅𝐷)(𝑦̃) ∩ 𝜒(𝑅𝐷𝐷)(𝑦̃)](𝑔)  (Using Theorem 4.4) 

⊇ [𝜒(𝐷𝐷𝑅)∩(𝐷𝑅𝐷)∩(𝑅𝐷𝐷)(𝑦̃)](𝑔) = 𝑊, 

𝜒𝑅(𝜚) (𝑔) 

≤ [( 𝜒𝐷(𝜚) ∘̃ 𝜒𝐷(𝜚) ∘̃ 𝜒𝑅(𝜚)) ∨ (𝜒𝐷(𝜚) ∘̃ 𝜒𝑅(𝜚)  ∘̃ 𝜒𝐷(𝜚)) ∨

                                                                        (𝜒𝑅(𝜚) ∘̃ 𝜒𝐷(𝜚)   ∘̃ 𝜒𝐷(𝜚))](𝑔)  

≤ [𝜒(𝐷𝐷𝑅)(𝜚) ∨ 𝜒(𝐷𝑅𝐷)(𝜚) ∨ 𝜒(𝑅𝐷𝐷)(𝜚)](𝑔)  (Using Theorem 4.4) 

≤ [𝜒(𝐷𝐷𝑅)∨(𝐷𝑅𝐷)∨(𝑅𝐷𝐷)(𝜚)](𝑔) = 0, 

which imply 𝑔 ∈ 𝑅. Thus (𝐷𝐷𝑅) ∩ (𝐷𝑅𝐷) ∩ (𝑅𝐷𝐷) ⊆ 𝑅  and hence 𝑅 is a quasi-ideal in 𝐷. 
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(𝑖𝑖) ⟹ (𝑖)  Let 𝑅 of 𝐷 be a quasi-ideal. Then (𝐷𝐷𝑅) ∩ (𝐷𝑅𝐷) ∩ (𝑅𝐷𝐷) ⊆ 𝑅  and (𝐷𝐷𝑅) ∩ (𝐷𝐷𝑅𝐷𝐷) ∩ (𝑅𝐷𝐷) ⊆
𝑅. Now 

 
[𝐷 ∘̃ 𝐷 ∘̃ 𝜒𝑅(𝑦̃)] ∩ [𝐷 ∘̃ 𝜒𝑅(𝑦̃) ∘̃ 𝐷] ∩ [𝜒𝑅(𝑦̃) ∘̃ 𝐷 ∘̃ 𝐷] 

= [𝜒𝐷(𝑦̃) ∘̃ 𝜒𝐷(𝑦̃) ∘̃ 𝜒𝑅(𝑦̃)] ∩ [𝜒𝐷(𝑦̃) ∘̃ 𝜒𝑅(𝑦̃) ∘̃ 𝜒𝐷(𝑦̃)] ∩ [𝜒𝑅(𝑦̃) ∘̃ 𝜒𝐷(𝑦̃) ∘̃ 𝜒𝐷(𝑦̃)]  
= 𝜒𝐷𝐷𝑅(𝑦̃) ∩ 𝜒𝐷𝑅𝐷(𝑦̃) ∩ 𝜒𝑅𝐷𝐷(𝑦̃)                           (Using Theorem 4.4) 

= 𝜒(𝐷𝐷𝑅)∩(𝐷𝑅𝐷)∩(𝑅𝐷𝐷)(𝑦̃) ⊆ 𝜒𝑅(𝑦̃), 
[𝐷 ∘̃ 𝐷 ∘̃ 𝜒𝑅(𝜚)] ∨ [𝐷 ∘̃ 𝜒𝑅(𝜚) ∘̃ 𝐷] ∨ [𝜒𝑅(𝜚) ∘̃ 𝐷 ∘̃ 𝐷] 

= [𝜒𝐷(𝜚) ∘̃ 𝜒𝐷(𝜚) ∘̃ 𝜒𝑅(𝜚)] ∨ [𝜒𝐷(𝜚) ∘̃ 𝜒𝑅(𝜚) ∘̃ 𝜒𝐷(𝜚)] ∨ [𝜒𝑅(𝜚) ∘̃ 𝜒𝐷(𝜚) ∘̃ 𝜒𝐷(𝜚)]  
= 𝜒𝐷𝐷𝑅(𝜚) ∨ 𝜒𝐷𝑅𝐷(𝜚) ∨ 𝜒𝑅𝐷𝐷(𝜚)                            (Using Theorem 4.4) 

= 𝜒(𝐷𝐷𝑅)∨(𝐷𝑅𝐷)∨(𝑅𝐷𝐷)(𝜚) ≥ 𝜒𝑅(𝜚). 

So, [ 𝜒𝐷(𝑦̃𝜚 ) ⊙  𝜒𝐷(𝑦̃𝜚 ) ⊙ 𝜒𝑅(𝑦̃𝜚 ) ] ⋒ [ 𝜒𝐷(𝑦̃𝜚 )  ⊙ 𝜒𝑅(𝑦̃𝜚 )  ⊙  𝜒𝐷(𝑦̃𝜚 ) ] ⋒ [ 𝜒𝑅(𝑦̃𝜚 )  ⊙  𝜒𝐷(𝑦̃𝜚 )   ⊙ 𝜒𝐷(𝑦̃𝜚 ) ] ≪

 𝜒𝐷(𝑦̃𝜚 ) . 

 

Theorem 4.6. Let 𝑧̃𝜛 be a hybrid quasi-ideal of 𝐷.  Then [Γ, 𝜉] −hybrid cut   𝑧̃𝜛[Γ, 𝜉]  is a quasi-ideal of  𝐷 for every Γ ∈ 𝑃(𝑊) 

and 𝜉 ∈ 𝐼. 
 

Proof: Let  𝑧̃𝜛 be a hybrid quasi-ideal of  𝐷 and 𝜉 ∈ 𝐼, Γ ∈ 𝑃(𝑊) and let 𝑔, 𝑚, 𝑛 ∈ 𝑧̃𝜛[Γ, 𝜉]. Then 𝑧̃(𝑔), 𝑧̃(𝑚), 𝑧̃(𝑛)  ⊇
Γ, 𝜛(𝑔), 𝜛(𝑚), 𝜛(𝑛) ≤ 𝜉. Since 𝑧̃𝜛 is a hybrid quasi-ideal of 𝐷, we have (𝑖)    𝑧̃(𝑔𝑚𝑛) ⊇ (𝐷 ∘̃ 𝐷 ∘̃ 𝑧̃)(𝑔𝑚𝑛) ∩
(𝐷 ∘̃ 𝑧̃ ∘̃ 𝐷)(𝑔𝑚𝑛) ∩ (𝑧̃ ∘̃ 𝐷 ∘̃ 𝐷)(𝑔𝑚𝑛) ⊇ Γ and 𝜛(𝑔𝑚𝑛) ≤ (𝐷 ∘̃ 𝐷 ∘̃ 𝜛) (𝑔𝑚𝑛) ∨ (𝐷 ∘̃ 𝜛 ∘̃  𝐷)(𝑔𝑚𝑛) ∨ (𝜛 ∘̃ 𝐷 ∘̃ 𝐷)(𝑔𝑚𝑛) ≤
𝜉. 

(𝑖𝑖) 𝑧̃(𝑔𝑚𝑛) ⊇ (𝐷 ∘̃ 𝐷 ∘̃ 𝑧̃)(𝑔𝑚𝑛) ∩ (𝐷 ∘̃ 𝐷 ∘̃ 𝑧̃ ∘̃ 𝐷 ∘̃ 𝐷)(𝑔𝑚𝑛) ∩ (𝑧̃ ∘̃ 𝐷 ∘̃ 𝐷)(𝑔𝑚𝑛) ⊇ Γ, 𝜛(𝑔𝑚𝑛) ≤ (𝐷 ∘̃ 𝐷 ∘̃ 𝜛) 
(𝑔𝑚𝑛) ∨ (𝐷 ∘̃ 𝐷 ∘̃ 𝜛 ∘̃  𝐷 ∘̃ 𝐷)(𝑔𝑚𝑛) ∨ (𝜛 ∘̃ 𝐷 ∘̃ 𝐷)(𝑔𝑚𝑛) ≤ 𝜉. 

Thus  𝑔𝑚𝑛 ∈ 𝑧̃𝜛[Γ, 𝜉]. Similarly 𝑚𝑔𝑛, 𝑛𝑚𝑔 ∈ 𝑧̃𝜛[Γ, 𝜉]. Hence 𝑧̃𝜛[Γ, 𝜉] is a quasi- ideal of  𝐷. 

 

Theorem 4.7. Let 𝑦̃1𝛽 , 𝑦̃2𝜚, 𝑦̃3𝛿 be respectively a hybrid right ideal, a hybrid lateral ideal and a hybrid left ideal of 𝐷. Then   

𝑦̃1𝛽 ⊙  𝑦̃2𝜚 ⊙  𝑦̃3𝛿 ≪ 𝑦̃1𝛽 ⋒ 𝑦̃2𝜚 ⋒ 𝑦̃3𝛿 . 

 

Proof. Let 𝑦̃1𝛽 , 𝑦̃2𝜚, 𝑦̃3𝛿 be the hybrid right, lateral and left ideals of 𝐷 respectively, and 𝑔 ∈ 𝐷 be such that 𝑔 = 𝑥𝑚𝑝 ∀ 𝑥, 𝑚, 𝑝 ∈

𝐷. Consider,  

 

(𝑦̃1 ∘̃ 𝑦̃2 ∘̃ 𝑦̃3)(𝑔) = ⋃ {𝑦̃1(𝑥) ∩ 𝑦̃2(𝑚) ∩ 𝑦̃3(𝑝)}

𝑔=𝑥𝑚𝑝

    

                                 ⊆ ⋃ {𝑦̃1(𝑥𝑚𝑝) ∩ 𝑦̃2(𝑥𝑚𝑝) ∩ 𝑦̃3(𝑥𝑚𝑝)}

𝑔=𝑥𝑚𝑝

 

                             ⊆  𝑦̃1(𝑔) ∩ 𝑦̃2(𝑔) ∩ 𝑦̃3(𝑔), 

(𝛽 ∘̃ 𝜚 ∘̃ 𝛿)(𝑔) = ⋀ {𝛽(𝑥) ∨ 𝜚(𝑚) ∨ 𝛿(𝑝)}

𝑔=𝑥𝑚𝑝

 

                            ≥ ⋀ {𝛽(𝑥𝑚𝑝) ∨ 𝜚(𝑥𝑚𝑝) ∨ 𝛿(𝑥𝑚𝑝)}

𝑔=𝑥𝑚𝑝

 

                         ≥ 𝛽(𝑔) ∨ 𝜚(𝑔) ∨ 𝛿(𝑔). 
If 𝑔 ≠ 𝑥𝑚𝑝, then (𝑦̃1 ∘̃ 𝑦̃2 ∘̃ 𝑦̃3)(𝑔) = ∅ ⊆ (𝑦̃1 ∩ 𝑦̃2 ∩ 𝑦̃3)(𝑔) and (𝛽 ∘̃ 𝜚 ∘̃ 𝛿)(𝑔) = 1 ≥ (𝛽 ∨ 𝜚 ∨ 𝛿)(𝑔).  Hence 𝑦̃1𝛽 ⊙

 𝑦̃2𝜚 ⊙  𝑦̃3𝛿 ≪ 𝑦̃1𝛽 ⋒ 𝑦̃2𝜚 ⋒ 𝑦̃3𝛿 . 

 

Theorem 4.8. Let 𝑦̃1𝜚, 𝑦̃2𝛽 be respectively a hybrid right ideal and a hybrid left ideal of 𝐷. Then   𝑦̃1𝜚 ⊙  𝐷 ⊙  𝑦̃2𝛽 ≪ 𝑦̃1𝜚 ⋒ 𝑦̃2𝛽 . 

 

Proof. Let 𝑦̃1𝜚, 𝑦̃2𝛽 be a hybrid right ideal and a hybrid left ideal of 𝐷 respectively. Consider 𝑔 ∈ 𝐷 such that 𝑔 =

𝑥𝑚𝑝 ∀𝑥, 𝑚, 𝑝 ∈ 𝐷.  Now 

 

(𝑦̃1 ∘̃ 𝐷 ∘̃ 𝑦̃3)(𝑔) = ⋃ {𝑦̃1(𝑥) ∩ 𝐷(𝑚) ∩ 𝑦̃2(𝑝)}

𝒈=𝒙𝒎𝒑

 

                                = ⋃ {𝑦̃1(𝑥) ∩ 𝑊 ∩ 𝑦̃2(𝑝)}

𝑔=𝑥𝑚𝑝

 

                                ⊆ ⋃ {𝑦̃1(𝑥𝑚𝑝) ∩ 𝑦̃2(𝑥𝑚𝑝)}

𝑔=𝑥𝑚𝑝

 

                                = 𝑦̃1(𝑔) ∩ 𝑦̃2(𝑔), 
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(𝜚 ∘̃ 𝐷 ∘̃ 𝛽)(𝑔) = ⋀ {𝜚(𝑥) ∨ 𝐷(𝑚) ∨ 𝛽(𝑝)}

𝑔=𝑥𝑚𝑝

 

    = ⋀ {𝜌(𝑥𝑚𝑝) ∨ 0 ∨ 𝛽(𝑥𝑚𝑝)}

𝑔=𝑥𝑚𝑝

 

          = ⋀ {𝜌(𝑥) ∨ 𝛽(𝑝)}

𝑔=𝑥𝑚𝑝

 

          = ⋀ {𝜌(𝑥𝑚𝑝) ∨ 𝛽(𝑥𝑚𝑝)}

𝑔=𝑥𝑚𝑝

 

         ≥ 𝜌(𝑔) ∨ 𝛽(𝑔). 
If 𝑔 ≠ 𝑥𝑚𝑝, then (𝑦̃1 ∘̃ 𝐷 ∘̃ 𝑦̃3)(𝑔) = ∅ ⊆ (𝑦̃1 ∩ 𝑦̃2)(𝑔) and (𝜚 ∘̃ 𝐷 ∘̃ 𝛽)(𝑔) = 1 ≥ (𝜚 ∨ 𝛽)(𝑔).  Hence 𝑦̃1𝜚 ⊙  𝐷 ⊙

 𝑦̃2𝛽 ≪ 𝑦̃1𝜚 ⋒ 𝑦̃2𝛽 . 

 

5. Hybrid A-Ideals in Ternary Semigroup 
 

Fuzzy A-ideals in ternary semigroups were first discussed by Suebsung, Wattanatripop, and Chinram (2019). Now we 

describe the hybrid A-ideals in ternary semigroup as follows. 

 

Definition 5.1. Let 𝑘̃𝜏 , 𝑦̃𝜚 ∈ 𝐻(𝐷). Then 𝑘̃𝜏 is a hybrid left (resp., right, lateral) A-ideal of 𝐷 if ∀ 𝑔 ∈ 𝐷,  

(𝑖) (𝜒𝑔(𝑦̃) ∘̃ 𝜒𝑔(𝑦̃) ∘̃ 𝑘̃) ∩ 𝑘̃ ≠ ∅ (𝑟𝑒𝑠𝑝., (𝑘̃ ∘̃ 𝜒𝑔(𝑦̃) ∘̃ 𝜒𝑔(𝑦̃)) ∩ 𝑘̃ ≠ ∅,     (𝜒𝑔(𝑦̃) ∘̃ 𝑘̃ ∘̃ 𝜒𝑔(𝑦̃)) ∩ 𝑘̃ ≠ ∅ ); 

(𝑖𝑖) (𝜒𝑔(𝜚) ∘̃ 𝜒𝑔(𝜚) ∘̃ 𝜏) ∨ 𝜏 ≠ 1 (𝑟𝑒𝑠𝑝., (𝜏 ∘̃ 𝜒𝑔(𝜚) ∘̃ 𝜒𝑔(𝜚)) ∨ 𝜏 ≠ 1,       (𝜒𝑔(𝜚) ∘̃ 𝜏 ∘̃ 𝜒𝑔(𝜚)) ∨ 𝜏 ≠ 1 ). 

If   𝑘̃𝜏 is a hybrid left, a hybrid right and a hybrid lateral A-ideal of 𝐷, then it is a hybrid A-ideal of 𝐷. 

 

Example 5.2. Consider that 𝐷 = {ℤ6} = {0, 1, 2, 3, 4, 5} is a ternary semigroup with usual addition and define a hybrid structure 

𝑘̃𝜏 in 𝐷 over 𝑊 = {𝑤1, 𝑤2, 𝑤3, 𝑤4 } with 𝑘̃ denoting any constant mapping from 𝐷 to 𝐼, and 𝜏(0) = 0, 𝜏(1) = 0.8, 𝜏(2) = 0, 𝜏(3) =
0.2, 𝜏(4) = 0.3, 𝜏(5) = 0. For any 𝑦̃𝜚 ∈ 𝐻(𝐷), we have 

If 𝑔 = 0, we have [(𝜒𝑔(𝜚) ∘̃ 𝜒𝑔(𝜚) ∘̃ 𝜏) ∨ 𝜏](1) = 0.8 ≠ 1. 

If 𝑔 = 1, we have [(𝜒𝑔(𝜚) ∘̃ 𝜒𝑔(𝜚) ∘̃ 𝜏) ∨ 𝜏](3) = 0.2 ≠ 1. 

If 𝑔 = 2, we have [(𝜒𝑔(𝜚) ∘̃ 𝜒𝑔(𝜚) ∘̃ 𝜏) ∨ 𝜏](3) = 0.2 ≠ 1. 

If 𝑔 = 3, we have [(𝜒𝑔(𝜚) ∘̃ 𝜒𝑔(𝜚) ∘̃ 𝜏) ∨ 𝜏](1) = 0.8 ≠ 1. 

If 𝑔 = 4, we have [(𝜒𝑔(𝜚) ∘̃ 𝜒𝑔(𝜚) ∘̃ 𝜏) ∨ 𝜏](3) = 0.2 ≠ 1. 

If 𝑔 = 5, we have [(𝜒𝑔(𝜚) ∘̃ 𝜒𝑔(𝜚) ∘̃ 𝜏) ∨ 𝜏](1) = 0.8 ≠ 1. 

Then, if 𝑔 = 0, we have  [(𝜒𝑔(𝑦̃) ∘̃ 𝜒𝑔(𝑦̃) ∘̃ 𝑘̃) ∩ 𝑘̃](𝑔) ≠ ∅ 𝑎𝑛𝑑  [(𝜒𝑔(𝜚) ∘̃ 𝜒𝑔(𝜚) ∘̃ 𝜏) ∨ 𝜏](𝑔) ≠ 1 for all 𝑔 ∈ 𝐷. 

Hence 𝑘̃𝜏  is a hybrid left A-ideal of 𝐷. 

 

Definition 5.3.  Let 𝑡̃𝛿  ∈ 𝐻(𝐷). Then support of 𝑡̃𝛿 is defined by   

 

𝑠𝑢𝑝𝑝(𝑡̃𝛿) = {𝑔 ∈ 𝐷: 𝑡̃(𝑔) ≠ ∅ 𝑎𝑛𝑑   𝜚(𝑔) ≠ 1}. 
 

Theorem 5.4. For any 𝑦̃𝜚, 𝑘̃𝜏 ∈ 𝐻(𝐷) and 𝑅(≠ ∅) ⊆ 𝐷, we have 

(𝑖) 𝑅 of 𝐷 is a left A-ideal  ⟺ 𝜒𝑅(𝑦̃𝜚) of 𝐷 is a hybrid left A-ideal. 

(𝑖𝑖) 𝑅 of 𝐷 is a lateral A-ideal  ⟺ 𝜒𝑅(𝑦̃𝜚) of 𝐷 is a hybrid lateral A-ideal. 

(𝑖𝑖𝑖) 𝑅 of 𝐷 is a right A-ideal  ⟺ 𝜒𝑅(𝑦̃𝜚) of 𝐷 is a hybrid right A-ideal. 

(𝑖𝑣) 𝑅 of 𝐷 is a A-ideal  ⟺ 𝜒𝑅(𝑦̃𝜚) of 𝐷 is a hybrid A-ideal. 

 

Proof:  (𝑖) Suppose that 𝑅 of 𝐷 is a left A-ideal. Then for each  𝑔 ∈ 𝐷, there exists  𝑚 ∈ 𝑔𝑔𝑅 ∩ 𝑅 such that 

[(𝜒𝑔(𝑘̃) ∘̃ 𝜒𝑔(𝑘̃) ∘̃ 𝜒𝑅(𝑦̃)) ∩ 𝜒𝑅(𝑦̃)](𝑚) ≠ ∅ and [(𝜒𝑔(𝜏) ∘̃ 𝜒𝑔(𝜏) ∘̃ 𝜒𝑅(𝜚)) ∨ 𝜒𝑅(𝜚)](𝑔) ≠ 1, so 𝜒𝑅(𝑦̃𝜚) is a hybrid left A-ideal 

of  𝐷. Conversely, if 𝜒𝑅(𝑦̃𝜚) of 𝐷 is a hybrid left A-ideal, then for all 𝑚 ∈ 𝐷, we have [(𝜒𝑔(𝑘̃) ∘̃ 𝜒𝑔(𝑘̃) ∘̃ 𝜒𝑅(𝑦̃)) ∩ 𝜒𝑅(𝑦̃)] (𝑚) ≠

∅ and [(𝜒𝑔(𝜏) ∘̃ 𝜒𝑔(𝜏) ∘̃ 𝜒𝑅(𝜚)) ∨ 𝜒𝑅(𝜚)] (𝑚) ≠ 1, which imply  𝑚 ∈ 𝑔𝑔𝑅 ∩ 𝑅. So 𝑔𝑔𝑅 ∩ 𝑅 ≠ ∅. Hence 𝑅 of 𝐷 is a left A-ideal. 

The proofs of (𝑖𝑖)  as well as (𝑖𝑖𝑖) are similar.  

Combining (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖) yields (𝑖𝑣). 
 

Theorem 5.5. Let  𝑦̃𝜚, 𝑘̃𝜏 ∈ 𝐻(𝐷). Then 

(𝑖) 𝑦̃𝜚 of 𝐷 is a hybrid left A-ideal  ⟺ 𝑠𝑢𝑝𝑝(𝑦̃𝜚) of 𝐷 is a left A-ideal. 

(𝑖𝑖) 𝑦̃𝜚 of 𝐷 is a hybrid lateral A-ideal  ⟺ 𝑠𝑢𝑝𝑝(𝑦̃𝜚) of 𝐷 is a lateral A-ideal. 
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(𝑖𝑖𝑖) 𝑦̃𝜚 of 𝐷 is a hybrid right A-ideal  ⟺ 𝑠𝑢𝑝𝑝(𝑦̃𝜚) of 𝐷 is a right A-ideal. 

(𝑖𝑣) 𝑦̃𝜚 of 𝐷 is a hybrid A-ideal  ⟺ 𝑠𝑢𝑝𝑝(𝑦̃𝜚) of 𝐷 is a A-ideal. 

 

Proof:  (𝑖) Consider 𝑦̃𝜚 of 𝐷 that is a hybrid left A-ideal and 𝑘̃𝜏 ∈ 𝐻(𝐷). Then 

[(𝜒𝑔(𝑘̃) ∘̃ 𝜒𝑔(𝑘̃) ∘̃ 𝑦̃) ∩ 𝑦̃](𝑔) ≠ ∅ and [(𝜒𝑔(𝜏) ∘̃ 𝜒𝑔(𝜏) ∘̃  𝜚) ∨ 𝜚](𝑔) ≠ 1 ∀ 𝑔 ∈ 𝐷. For each 𝑔 ∈ 𝐷,  there exist 

𝑚, 𝑏 ∈ 𝐷 such that 𝑚 = 𝑔𝑔𝑏, 𝑦̃(𝑚) ≠ ∅, 𝜚(𝑚) ≠ 1 and 𝑦̃(𝑏) ≠ ∅, 𝜚(𝑏) ≠ 1. So 𝑚 , 𝑏 ∈ 𝑠𝑢𝑝𝑝(𝑦̃𝜚). This implies  

[(𝜒𝑔(𝑘̃) ∘̃ 𝜒𝑔(𝑘̃) ∘̃ 𝜒𝑠𝑢𝑝𝑝(𝑦̃𝜚)(𝑦̃)) ∩ 𝜒𝑠𝑢𝑝𝑝(𝑦̃𝜚)(𝑦̃)] (𝑚) ≠ ∅ and [(𝜒𝑔(𝜏) ∘̃ 𝜒𝑔(𝜏) ∘̃ 𝜒𝑠𝑢𝑝𝑝(𝑦̃𝜚)(𝜚)) ∩ 𝜒𝑠𝑢𝑝𝑝(𝑦̃𝜚)(𝜚)] (𝑚) ≠ 1. So 

𝜒𝑠𝑢𝑝𝑝(𝑦̃𝜚)(𝑦̃𝜚) is a hybrid left A-ideal of 𝐷. Then by Theorem 5.4(𝑖), 𝑠𝑢𝑝𝑝(𝑦̃𝜚) is a left A-ideal of 𝐷. Conversely, suppose that 

𝑠𝑢𝑝𝑝(𝑦̃𝜚) of 𝐷 is a left A-ideal. Then by Theorem 5.4(𝑖), 𝜒𝑠𝑢𝑝𝑝(𝑦̃𝜚)(𝑦̃𝜚) of 𝐷 is a left A-ideal. This gives that for any 𝑘̃𝜏 ∈

𝐻(𝐷),   [(𝜒𝑔(𝑘̃) ∘̃ 𝜒𝑔(𝑘̃) ∘̃ 𝜒𝑠𝑢𝑝𝑝(𝑦̃𝜚)(𝑦̃)) ∩ 𝜒𝑠𝑢𝑝𝑝(𝑦̃𝜚)(𝑦̃)] ≠ ∅ and [(𝜒𝑔(𝜏) ∘̃ 𝜒𝑔(𝜏) ∘̃ 𝜒𝑠𝑢𝑝𝑝(𝑦̃𝜚)(𝜚)) ∨ 𝜒𝑠𝑢𝑝𝑝(𝑦̃𝜚)(𝜚)] ≠ 1 ∀ 𝑔 ∈

𝐷. Then there exist 𝑚, 𝑏 ∈ 𝐷 such that 𝑚 = 𝑔𝑔𝑏 and 𝑚, 𝑏 ∈ 𝑠𝑢𝑝𝑝(𝑦̃𝜚), so 𝑦̃(𝑚) ≠ ∅, 𝜚(𝑚) ≠ 1 and 𝑦̃(𝑏) ≠ ∅, 𝜚(𝑏) ≠ 1. 

So [(𝜒𝑔(𝑘̃) ∘̃ 𝜒𝑔(𝑘̃) ∘̃ (𝑦̃)) ∩ (𝑦̃)] (𝑚) ≠ ∅ and [(𝜒𝑔(𝜏) ∘̃ 𝜒𝑔(𝜏) ∘̃ (𝜚)) ∨ (𝜚)](𝑚) ≠ 1. Thus [(𝜒𝑔(𝑘̃) ∘̃ 𝜒𝑔(𝑘̃) ∘̃ (𝑦̃)) ∩ (𝑦̃)] ≠

∅  and [(𝜒𝑔(𝜏) ∘̃ 𝜒𝑔(𝜏) ∘̃ (𝜚)) ∨ (𝜚)] ≠ 1  ∀  𝑔 ∈ 𝐷.  Hence 𝑦̃𝜚 is a hybrid left A-ideal of 𝐷. 

The proofs of  (𝑖𝑖) and (𝑖𝑖𝑖) are similar. 
Combining (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖) yields (𝑖𝑣). 

 

Definition 5.6. A hybrid left A-ideal 𝑦̃𝜚 is minimal if for all hybrid left A-ideals 𝑡̃𝛿 of 𝐷 such that 𝑡̃𝛿 ≪ 𝑦̃𝜚, we have 𝑠𝑢𝑝𝑝(𝑡̃𝛿) =

𝑠𝑢𝑝𝑝(𝑦̃𝜚). 

 

Theorem 5.7. Let 𝑦̃𝜚 ∈ 𝐻(𝐷) and 𝑅(≠ ∅) ⊆ 𝐷. Then 

(𝑖) 𝑅 of 𝐷 is a minimal left A-ideal  ⟺ 𝜒𝑅(𝑦̃𝜚) of 𝐷 is a minimal hybrid left A-ideal. 

(𝑖𝑖) 𝑅 of 𝐷 is a minimal lateral A-ideal  ⟺ 𝜒𝑅(𝑦̃𝜚) of 𝐷 is a minimal hybrid lateral A- ideal. 

(𝑖𝑖𝑖) 𝑅 of 𝐷 is a minimal right A-ideal  ⟺ 𝜒𝑅(𝑦̃𝜚) of 𝐷 is a minimal hybrid right A- ideal. 

(𝑖𝑣) 𝑅 of 𝐷 is a minimal A-ideal  ⟺ 𝜒𝑅(𝑦̃𝜚) of 𝐷 is a minimal hybrid A-ideal. 

 

Proof:  (𝑖) Let 𝑅 of 𝐷 be a minimal left A-ideal. From Theorem 5.4(𝑖), 𝜒𝑅(𝑦̃𝜚) is a hybrid left A-ideal of 𝐷. Consider 𝑡̃𝛿 that is a 

hybrid left A-ideal of 𝐷 such that  𝑡̃𝛿 ≪ 𝜒𝑅(𝑦̃𝜚). Using Theorem 5.5(𝑖), 𝑠𝑢𝑝𝑝(𝑡̃𝛿) is a left A-ideal of 𝐷. Then  𝑠𝑢𝑝𝑝(𝑡̃𝛿) ≪

𝑠𝑢𝑝𝑝(𝜒𝑅(𝑦̃𝜚)) = 𝑅. By our assumption 𝑅 is minimal, so 𝑅 ⊆ 𝑠𝑢𝑝𝑝( 𝑡̃𝛿).  Hence  𝑠𝑢𝑝𝑝(𝑡̃𝛿) = 𝑅 = 𝑠𝑢𝑝𝑝 (𝜒𝑅(𝑦̃𝜚)).  Therefore, 

𝜒𝑅(𝑦̃𝜚) is minimal. Conversely, assume that 𝜒𝑅(𝑦̃𝜚) of 𝐷 is a minimal hybrid left A-ideal. Then 𝑅 of 𝐷 is a left A-ideal using 

Theorem 5.4(𝑖). Let 𝐺 of 𝐷 be a left A-ideal such that 𝐺 ⊆ 𝐷. By Theorem 5.4(𝑖),  𝜒𝐺(𝑦̃𝜚) of 𝐷 is a hybrid left A-ideal such that 

𝜒𝐺(𝑦̃𝜚) ≪  𝜒𝑅(𝑦̃𝜚). Hence 𝐺 = 𝑠𝑢𝑝𝑝 (𝜒𝐺(𝑦̃𝜚)) = 𝑠𝑢𝑝𝑝 (𝜒𝑅(𝑦̃𝜚)) = 𝑅. Therefore R is minimal. 

 

Theorem 5.8. Let 𝑅(≠ ∅) ⊆ 𝐷  and 𝑦̃𝜚 ∈ 𝐻(𝐷). Then 

(𝑖) 𝑅 has no proper left A-ideal of 𝐷   ⟺ for all hybrid left A-ideals  𝑦̃𝜚 of 𝐷, 𝑠𝑢𝑝𝑝(𝑦̃𝜚) = 𝑅. 

(𝑖𝑖) 𝑅 has no proper right A-ideal of 𝐷   ⟺ for all hybrid right A-ideals  𝑦̃𝜚 of 𝐷, 𝑠𝑢𝑝𝑝(𝑦̃𝜚) = 𝑅. 

(𝑖𝑖𝑖) 𝑅 has no proper lateral A-ideal of 𝐷   ⟺ for all hybrid lateral A-ideals  𝑦̃𝜚 of 𝐷, 𝑠𝑢𝑝𝑝(𝑦̃𝜚) = 𝑅. 

(𝑖𝑣) 𝑅 has no proper A-ideal of 𝐷   ⟺ for all hybrid A-ideals  𝑦̃𝜚 of 𝐷,  𝑠𝑢𝑝𝑝(𝑦̃𝜚) = 𝑅. 

 

Proof:  (𝑖) Suppose that 𝑦̃𝜚 of 𝐷 is a hybrid left A-ideal. From Theorem 5.4 (𝑖), 𝑠𝑢𝑝𝑝(𝑦̃𝜚)  of 𝐷 is a left A-ideal. As 𝑅 has no 

proper left A-ideal, 𝑠𝑢𝑝𝑝(𝑦̃𝜚) = 𝑅. Conversely, let 𝑦̃𝜚 of 𝐷 be a hybrid left A-ideal and 𝑠𝑢𝑝𝑝(𝑦̃𝜚) = 𝑅. Take 𝐺 of 𝐷 to be a proper 

left A-ideal. Then 𝜒𝐺(𝑦̃𝜚) is a hybrid left A-ideal using Theorem5.4. (𝑖) and 𝑠𝑢𝑝𝑝 (𝜒𝐺(𝑦̃𝜚)) = 𝐺 ≠ 𝑅, a contradiction. Hence 𝑅 

of 𝐷 has no proper left A-ideal. 

The proofs of (𝑖𝑖), (𝑖𝑖𝑖) and (𝑖𝑣) are similar. 

 

6. Conclusions 
 

In algebraic structures, the study of ternary 

semigroups has led to advances in the understanding of ideal 

theory, regularity theory, congruence, and Green’s relations. In 

computer science, ternary semigroups have been utilized in the 

design and analysis of algorithms, particularly in areas such as 

data compression and error correction. The concept of A-ideals 

provides a generalization of the notions of right ideals, lateral 

ideals, and left ideals. The applicability of hybrid structures has 

been assessed in different algebraic structures, including rings, 

semirings, and lattices, providing insights into their adaptability 

and efficiency. Furthermore, comparative studies between the 

existing models and hybrid structures could be considered to 

understand their respective strengths and limitations in various 

decision-making scenarios. In this paper, we proposed a notion 

of hybrid quasi-ideals and examined the relations between 

quasi-ideals and hybrid quasi-ideals in ternary semigroups. 
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Also, we introduced the concept of A-hybrid ideals 

and obtained equivalent conditions for a set to be a minimal A-

ideal. Additionally, we found a relationship between A-ideal 

and its hybrid characteristic A-ideal. We characterized minimal 

A-ideals in ternary semigroups using minimal hybrid A-ideals.      
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