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Abstract 
 

In this paper, we propose a new distribution for survival data. The distribution is a new generalization of the weighted 

exponential distribution in the Marshall-Olkin family. Statistical properties of the proposed distribution are studied and its sub-

models are presented. The unknown parameters are estimated via a Bayesian approach. Simulation studies are conducted to assess 

the performance of the Bayesian estimator. Complete and censored data sets are analyzed to illustrate the potential of the proposed 

distribution. We also develop a regression model based on the proposed distribution. Finally, we compare the proposed model with 

other models. 
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1. Introduction  
 

Survival data refers to information that tracks the 

time until the occurrence of a specific event of interest. This 

type of data is commonly encountered in various fields, 

including medical research, epidemiology, cancer studies, and 

engineering. Analysis of survival data provides valuable 

insights into the timing of events and contributes to informed 

decision making. However, few distributions have been 

proposed for survival data. 

Several approaches are introduced to derive new 

distributions to obtain more flexible distributions. An 

interesting technique is adding parameters to original 

distributions. New distributions that are expanded from the 

original distributions provide more flexibility. Following this 

concept, Marshall and Olkin (1997) introduced a family by 

adding a new parameter to baseline distributions. This family is 

known as the Marshall-Olkin (MO) family. 

 

The cumulative distribution function (cdf) of the MO 

family is given by 
 

𝐹(𝑦) =
𝐺(𝑦)

1 − (1 − 𝛼)(1 − 𝐺(𝑦))
, 𝑦 ∈ 𝑅, 𝛼 > 0. (1) 

 

The corresponding probability density function (pdf) 

of the MO family is 
 

𝑓(𝑦) =
𝛼𝑔(𝑦)

[1 − (1 − 𝛼)(1 − 𝐺(𝑦))]
2 , 𝑦 ∈ 𝑅, 𝛼 > 0. (2) 

 

where 𝐺(𝑦)  and 𝑔(𝑦) are the cdf and pdf of a baseline 

distribution, respectively. 

Although many new distributions extended by the 

MO family are more flexible than their baseline distributions, 

most were proposed for neither censored data nor regression 

analysis (Algarni, 2021; Ikechukwu & Eghwerido, 2022; Javed, 

Nawaz, & Irfan, 2019; Mirmostafaee, Mahdizadeh, & 

Lemonte, 2017; Ristić & Kundu, 2015; Sabook & Pogány, 

2016). The MO extended Weibull distribution (Ghitany, Al-

Hussaini, & Al-Jarallah, 2005), and the MO extended Lomax 

distribution  (Ghitany,  Al-Awadhi,  &  Alkhalfan,  2007)  were



46 Y. Atikankul & S. Boonto / Songklanakarin J. Sci. Technol. 46 (1), 45-52, 2024 

introduced for censored data, but they were not developed for 

regression models. In addition, the method of maximum 

likelihood was applied to estimate the parameters of these 

distributions. Gupta and Kundu (2009) proposed the weighted 

exponential (WE) distribution that is a generalization of the 

exponential distribution obtained by the method of Azzalini 

(1985). The pdf of the WE distribution having the shape and 

the scale parameters, 𝜃 > 0 and 𝜆 > 0, is given by 
 

  𝑔(𝑦) =
𝜃 + 1

𝜃
𝜆𝑒−𝜆𝑦(1 − 𝑒−𝜃𝜆𝑦),   𝑦 > 0.    (3) 

 

The cdf of the WE distribution is given by 
 

𝐺(𝑦) = 1 −
1

𝜃
𝑒−𝜆𝑦(𝜃 + 1 − 𝑒−𝜃𝜆𝑦). (4) 

 

               The pdf and cdf of the WE distribution are in explicit 

form. This distribution contains the exponential distribution, 

the gamma distribution, and the generalized exponential (GE) 

distribution (Gupta & Kundu, 1999) as special cases. 

Moreover, two real data sets were analyzed for the WE 

distribution and the WE distribution outperforms the GE, 

gamma, and Weibull distributions. 

This paper proposes a new distribution for survival 

data. The distribution is an extension of the WE distribution by 

following the idea of Marshall and Olkin (1997), called the 

Marshall-Olkin weighted exponential (MOWE) distribution. 

Some properties and sub-models of the MOWE distribution are 

studied. Since maximum likelihood estimation is not suitable 

for small sample sizes, a Bayesian approach is applied in this 

paper. Complete and right censored data sets are analyzed by 

the MOWE distribution. Furthermore, we propose a regression 

model based on the MOWE distribution and we also show the 

potential of the proposed regression model by using a real data 

set. The MOWE distribution and the MOWE regression model 

provide satisfactory fits in the applications, and they 

outperform other competitive models. Hence, the proposed 

model can be used as an alternative in survival data analysis.  

The rest of this paper is organized as follows. We 

introduce the MOWE distribution and its sub-models in Section 

2. In Section 3, the unknown parameters of the proposed 

distribution are estimated by the Bayesian approach. A new 

regression model based on the proposed distribution is 

developed in Section 4. In Section 5, simulation studies are 

presented. Applications of the MOWE distribution and the 

MOWE regression model to survival data are shown in Section 

6. Finally, discussion and conclusions are reported in Section 

7. 

 

2. The Marshall-Olkin Weighted Exponential  

    Distribution 
 

The new distribution, called the MOWE distribution, 

is introduced in this section. Furthermore, we define the 

MOWE distribution and present its special cases. 

 
Theorem 1.  If a random variable 𝑌 follows the MOWE 

distribution with parameters 𝛼, 𝜃   and 𝜆 > 0, this is denoted 

by 𝑌 ∼ MOWE(𝛼, 𝜃, 𝜆). The cdf and pdf of 𝑌 are, respectively.

 

𝐹(𝑦) =
1 −

1
𝜃
𝑒−𝜆𝑦(𝜃 + 1 − 𝑒−𝜃𝜆𝑦)

1 − (1 − 𝛼)(
1
𝜃
𝑒−𝜆𝑦(𝜃 + 1 − 𝑒−𝜃𝜆𝑦))

,        (5) 

  

𝑓(𝑦) =
𝛼(𝜃 + 1)𝜆𝑒−𝜆𝑦(1 − 𝑒−𝜃𝜆𝑦)

𝜃 [1 − (1 − 𝛼) (
1
𝜃
𝑒−𝜆𝑦(𝜃 + 1 − 𝑒−𝜃𝜆𝑦))]

2 ,

𝑦 > 0. 

(6) 

 

Pdf and cdf plots of the MOWE distribution with 

different parameter values are shown in Figure 1. The MOWE 

pdf is either a decreasing or a unimodal function. 

 

 
A 

 

 
B 
 

Figure 1. Pdf plot (A) and cdf plot (B) of the MOWE distribution with 

some parameter values 

 

2.1 Sub-models of the MOWE distribution 
 

Sub-models of the MOWE distribution are shown in 

Table 1. 

 

2.2 Expansion 
 

The pdf of MOWE distribution can be written in the 

form of a series expansion. It can be used to study properties of 

the MOWE distribution. 

For |𝑧| < 1 and 𝑖 >  0, we can apply the series 

expansion 
 

 (1 − 𝑧)−𝑖 = ∑(
𝑖 + 𝑘 − 1

𝑘
) 𝑧𝑘

∞

𝑘=0

. (7) 

 

If  0 < 𝛼 < 1, the pdf of the MOWE distribution is 

given by 
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Table 1. Sub-models of the MOWE distribution 

 

Distribution 
Parameter 

𝛼 𝜃 𝜆 
    

The Marshall-Olkin exponential (MOE) distribution (Marshall & Olkin, 1997) 𝛼 ∞ 𝜆 
The Marshall-Olkin gamma (MOG) distribution (Ristić, Jose, & Ancy, 2007) 𝛼 0 𝜆 
The Marshall-Olkin generalized exponential distribution (Ristić & Kundu, 2015) 𝛼 1 𝜆 
The WE distribution (Gupta & Kundu, 2009) 1 𝜃 𝜆 
The exponential distribution 1 ∞ 𝜆 
The gamma distribution 1 0 𝜆 
The GE distribution (Gupta & Kundu, 1999) 1 1 𝜆 
    

 

𝑓(𝑦) = 𝛼𝑔(𝑦)∑(𝑘 + 1)(1 − 𝛼)𝑘
∞

𝑘=0

∑(
𝑘

𝑗
) (−1)𝑗

𝑘

𝑗=0

𝐺(𝑦)𝑗 . 

 

For 𝛼 >  1, we get 
 

𝑓(𝑦) =
𝑔(𝑦)

𝛼 [1 − (1 −
1
𝛼
𝐺(𝑦))]

2. 

The other formula for the pdf of the MOWE 

distribution can be defined by 
 

𝑓(𝑦) =∑ν𝑗𝑤𝑗+1(𝑦)

∞

𝑗=0

, (8) 

where  
 

𝜈𝑗 =

{
 
 

 
 𝛼(−1)

𝑗

𝑗 + 1
∑(

𝑘

𝑗
)

∞

𝑘=𝑗

(𝑘 + 1)(1 − 𝛼)𝑘 ,   0 <  𝛼 <  1

1

𝛼
(1 −

1

𝛼
)
𝑗

,               𝛼 >  1

 

and 𝑤𝑗+1(𝑦) = (𝑗 + 1)𝑔(𝑦)𝐺(𝑦)
𝑗. 

 

2.3 Survival function 
 

The general form of the survival function or 

reliability function is given by 𝑆(𝑦) = 1 − 𝐹(𝑦). Hence, the 

survival function of the MOWE distribution is  
 

 

𝑆(𝑦) =
𝛼𝑒−𝜆𝑦(𝜃 + 1 − 𝑒−𝜃𝜆𝑦)

𝜃 [1 − (1 − 𝛼) (
1
𝜃
𝑒−𝜆𝑦(𝜃 + 1 − 𝑒−𝜃𝜆𝑦))]

 . 

 

2.4 Hazard rate function 
 

The hazard rate or failure rate is given by ℎ(𝑦) =
𝑓(𝑦)

𝑆(𝑦)
. Thus, the hazard rate of the MOWE distribution is  

 

ℎ(𝑦) =
(𝜃 + 1)𝜆(1 − 𝑒−𝜃𝜆𝑦)

[1 − (1 − 𝛼) (
1
𝜃
𝑒−𝜆𝑦(𝜃 + 1 − 𝑒−𝜃𝜆𝑦))] [𝜃 + 1 − 𝑒−𝜃𝜆𝑦]

. 

 

2.5 Reversed hazard rate function 
 

The reversed hazard rate is expressed by 𝑟(𝑦) =
𝑓(𝑦)

𝐹(𝑦)
. 

Therefore, the reversed hazard rate of the MOWE distribution 

is 

  

𝑟(𝑦) =
𝛼(𝜃 + 1)𝜆𝑒−𝜆𝑦(1 − 𝑒−𝜃𝜆𝑦)

𝜃 [1 − (1 − 𝛼)(
1
𝜃
𝑒−𝜆𝑦(𝜃 + 1 − 𝑒−𝜃𝜆𝑦))] [1 −

1
𝜃
𝑒−𝜆𝑦(𝜃 + 1 − 𝑒−𝜃𝜆𝑦)]

. 

 

2.6 Order statistic 
 

Let 𝑌1, 𝑌2, … , 𝑌𝑛 be a random sample of size n from 

the MOWE distribution and let 𝑌𝑖:𝑛, 1 ≤ 𝑖 ≤ 𝑛 denote the i-th 

order statistics. Then, the pdf of 𝑌𝑖:𝑛 is written by 
 

𝑓𝑖:𝑛(𝑦) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
𝑓(𝑦)(𝐹(𝑦))

𝑖−1
(1 − 𝐹(𝑦))

𝑛−𝑖
. (9) 

 

Substituting the cdf and pdf of the MOWE 

distribution in Equation (5) and Equation (6) into Equation (9), 

the i-th order statistic of the MOWE distribution is given by 
 

 

𝑓𝑖:𝑛(𝑦) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
 

𝜃 + 1
𝜃

𝛼 𝜆 𝑒−𝜆𝑦(1 − 𝑒−𝜃 𝜆 𝑦)

[1 − (1 − 𝛼) (
1
𝜃
𝑒−𝜆 𝑦(𝜃 + 1 − 𝑒−𝜃 𝜆 𝑦))]

2 

×

(

 
 1 −

1
𝜃
𝑒−𝜆𝑦(𝜃 + 1 − 𝑒−𝜃𝜆𝑦)

1 − (1 − 𝛼) (
1
𝜃
𝑒−𝜆𝑦(𝜃 + 1 − 𝑒−𝜃𝜆𝑦))

)

 
 

𝑖−1

 

        ×

(

 
 
1−

1 −
1
𝜃
𝑒−𝜆𝑦(𝜃 + 1 − 𝑒−𝜃𝜆𝑦)

1 − (1 − 𝛼) (
1
𝜃
𝑒−𝜆𝑦(𝜃 + 1 − 𝑒−𝜃𝜆𝑦))

)

 
 

𝑛−𝑖

. 

                                  

2.7 Quantile function 
 

The quantile function is also known as the inverse of 

cdf. It provides a way to determine the value of random variable 

that corresponds to a specific probability. Moreover, it can be 

applied for skewness and kurtosis. 

The p-th quantile 𝑦𝑝 of the MOWE distribution can 

be obtained by solving the equation of 𝐹(𝑦) = 𝑝 to get 
 

𝑦𝑝 =
1

𝜆
log [

(𝜃 + 1 − 𝑒−𝜃𝜆𝑦𝑝)(1 − (1 − 𝑝))

𝜃(1 − 𝑝)
], 

where 𝑦𝑝 can be used to generate the MOWE random 

variate. 

Furthermore, the quantile function of the MO family 

can be written in term of the baseline quantile function as  
 

𝑦𝑝 = 𝑄𝐺 (
𝛼𝑝

1 − (1 − 𝛼)𝑝
), 

where 𝑄𝐺 is the baseline quantile function. 
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Hence, the quantile function of the MOWE 

distribution is written by 
 

𝑄𝑝 = 𝑄𝑊𝐸 (
𝛼𝑝

1 − (1 − 𝛼)𝑝
), 

where 𝑄WE is the quantile function of the WE 

distribution. 

Quantiles can be used to calculate measures of 

skewness and kurtosis. The Bowley's skewness and the Moor's 

kurtosis of the MOWE distribution are given by 
 

𝐵𝑘 =
𝑄0.75 + 𝑄0.25 − 2𝑄0.5

𝑄0.75 − 𝑄0.25
, 

 

𝑀𝑘 =
𝑄0.875 − 𝑄0.625 − 𝑄0.375 + 𝑄0.125

𝑄0.75 − 𝑄0.25
, 

respectively. 

Figure 2 shows Bowley's skewness plot and Moor's 

kurtosis plot of the MOWE distribution with some parameter 

values. 
 

 
A 
 

 
B 
 

Figure 2. Bowley’s skewness plot (A) and Moor’s kurtosis plot (B) of 

the MOWE distribution with some parameter values 

 

3. Parameter Estimation 
 

In this paper, Bayesian estimators are considered to 

estimate the unknown parameters in the MOWE model. The 

Bayesian approach regards parameters as random variables 

represented by a prior distribution. 

Suppose 𝑌1, 𝑌2, … , 𝑌𝑛 be an independent and 

identically distributed random variable of size n and 

𝑦1, 𝑦2, … , 𝑦𝑛 be the observations with the likelihood function 

𝐿(𝑦|Θ) where Θ = (𝛼, 𝜃, 𝜆 ) is the vector of parameters. The 

independent prior density 𝜋(Θ) can be set as 
 

𝜋(Θ) = 𝜋(𝛼)𝜋(𝜃)𝜋(𝜆). 
The joint posterior distribution is given by 
 

𝜋(Θ|𝑦) =
𝐿(𝑦|Θ)𝜋(Θ)

∫ 𝐿(𝑦|Θ)𝜋(Θ)𝑑(Θ)
Θ

. 

Since the denominator is normalization constant, the 

posterior distribution can be determined as 
 

𝜋(Θ|𝑦) ∝ 𝐿(𝑦|Θ)𝜋(Θ). (10) 
 

3.1 Bayesian estimators based on complete data 
 

Let 𝑌1, 𝑌2, … , 𝑌𝑛 be a random variable of size n from 

the MOWE distribution with the vector of parameters Θ. Then 

the likelihood function of the observed sample is given by 
 

𝐿(𝑦|Θ) =∏𝑓(𝑦𝑖; Θ)

𝑛

𝑖=1

 

                           =∏
𝛼(𝜃 + 1)𝜆𝑒−𝜆𝑦𝑖(1 − 𝑒−𝜃𝜆𝑦𝑖)

𝜃 [1 − (1 − 𝛼) (
1
𝜃
𝑒−𝜆𝑦𝑖(𝜃 + 1 − 𝑒−𝜃𝜆𝑦𝑖))]

2

𝑛

𝑖=1

. 

In this paper, the gamma(𝑎, 𝑏) distribution is used for 

non-informative prior distribution. According to Equation (10), 

we get the joint posterior distribution for parameters as 
 

𝜋(Θ| 𝑦) ∝∏
𝛼 (𝜃 + 1)𝜆 𝑒−𝜆 𝑦𝑖(1 − 𝑒−𝜃 𝜆 𝑦𝑖   )

𝜃 [1 − (1 − 𝛼) (
1
𝜃

 𝑒−𝜆 𝑦𝑖(𝜃 + 1 − 𝑒−𝜃 𝜆 𝑦𝑖 ))]

2

 

𝑛

𝑖=1

  

×
𝑏𝛼
𝑎𝛼

Γ(𝑎𝛼)
𝛼𝑎𝛼−1𝑒−𝑏𝛼𝛼 ×

𝑏𝜃
𝑎𝜃

Γ(𝑎𝜃)
𝜃𝑎𝜃−1𝑒−𝑏𝜃𝜃

×
𝑏𝜆
𝑎𝜆

Γ(𝑎𝜆)
𝜆𝑎𝜆−1𝑒−𝑏𝜆𝜆. 

The LaplaceDemon function maximizes the 

logarithm of the joint posterior density, and then 

log(𝜋(Θ|𝑦)) ∝ log(𝐿(𝑦|Θ)) + log(𝜋(Θ)). 
The joint posterior distribution for parameters of the 

MOWE distribution is obtained by 
 

log(𝜋(Θ|𝑦)) ∝∑log(𝛼)

𝑛

𝑖=1

−∑log(𝜃)

𝑛

𝑖=1

+∑log(𝜃 + 1)

𝑛

𝑖=1

+∑log(𝜆)

𝑛

𝑖=1

 

−𝜆∑𝑦𝑖

𝑛

𝑖=1

  +∑log(1 − 𝑒−𝜃𝜆𝑦𝑖)

𝑛

𝑖=1

 

−2∑log (1 − (1 − 𝛼) (
1

𝜃
𝑒−𝜆𝑦𝑖(𝜃 + 1 − 𝑒−𝜃𝜆𝑦𝑖)))

𝑛

𝑖=1

 

     + log(
𝑏𝛼
𝑎𝛼

Γ(𝑎𝛼)
𝛼𝑎𝛼−1𝑒−𝑏𝛼𝛼) + log (

𝑏
𝜃

𝑎𝜃

Γ(𝑎𝜃)
𝜃𝑎𝜃−1𝑒−𝑏𝜃𝜃) 

+ log(
𝑏𝜆
𝑎𝜆

Γ(𝑎𝜆)
𝜆𝑎𝜆−1𝑒−𝑏𝜆𝜆). 

               

3.2 Bayesian estimators based on censored data 
 

Considering an observation (𝑦𝑖 , δ𝑖) where 𝑦𝑖 is the 

failure time and δ𝑖  is the censoring indicator (δ𝑖= 0 if i-th 

observation is censored or δ𝑖 = 1 if i-th observation is recorded). 

The likelihood function of the MOWE distribution under 

censored sample is given by 
 

𝐿(𝑦|Θ) =∏𝑓(𝑦𝑖; Θ)
δ𝑖𝑆(𝑦𝑖; Θ)

1−δ𝑖

𝑛

𝑖=1

 

  =∏

[
 
 
 
 

𝛼(𝜃 + 1)𝜆𝑒−𝜆𝑦𝑖(1 − 𝑒−𝜃𝜆𝑦𝑖)

𝜃 [1 − (1 − 𝛼) (
1
𝜃
𝑒−𝜆𝑦𝑖(𝜃 + 1 − 𝑒−𝜃𝜆𝑦𝑖))]

2

]
 
 
 
 
𝛿𝑖

𝑛

𝑖=1
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  ×

[
 
 
 
 

𝛼𝑒−𝜆𝑦𝑖(𝜃 + 1 − 𝑒−𝜃𝜆𝑦𝑖)

𝜃 [1 − (1 − 𝛼) (
1
𝜃
𝑒−𝜆𝑦𝑖(𝜃 + 1 − 𝑒−𝜃𝜆𝑦𝑖))]

]
 
 
 
 
1−𝛿𝑖

. 

The joint posterior density for parameters is obtained 

by 
 

𝜋(Θ|𝑦) ∝∏

[
 
 
 
 

𝛼(𝜃 + 1)𝜆𝑒−𝜆𝑦𝑖(1 − 𝑒−𝜃𝜆𝑦𝑖)

𝜃 [1 − (1 − 𝛼) (
1
𝜃
𝑒−𝜆𝑦𝑖(𝜃 + 1 − 𝑒−𝜃𝜆𝑦𝑖))]

2

]
 
 
 
 
𝛿𝑖

𝑛

𝑖=1

 

   ×

[
 
 
 
 

𝛼𝑒−𝜆𝑦𝑖(𝜃 + 1 − 𝑒−𝜃𝜆𝑦𝑖)

𝜃 [1 − (1 − 𝛼) (
1
𝜃
𝑒−𝜆𝑦𝑖(𝜃 + 1 − 𝑒−𝜃𝜆𝑦𝑖))]

]
 
 
 
 
1−𝛿𝑖

 

 ×
𝑏𝛼
𝑎𝛼

Γ(𝑎𝛼)
𝛼𝑎𝛼−1𝑒−𝑏𝛼𝛼 ×

𝑏𝜃
𝑎𝜃

Γ(𝑎𝜃)
𝜃𝑎𝜃−1𝑒−𝑏𝜃𝜃 

 ×
𝑏𝜆
𝑎𝜆

Γ(𝑎𝜆)
𝜆𝑎𝜆−1𝑒−𝑏𝜆𝜆. 

Based on the Laplace's Demon, the logarithm of the 

unnormalized joint posterior distribution is given by 
 

log(𝜋(Θ|𝑦)) ∝∑log(𝛼)

𝑛

𝑖=1

−∑log(𝜃)

𝑛

𝑖=1

+∑𝛿𝑖 log(𝜃 + 1)

𝑛

𝑖=1

 

+∑𝛿𝑖 log(𝜆)

𝑛

𝑖=1

 − λ∑𝑦𝑖

𝑛

𝑖=1

+∑δ𝑖 log(1 − 𝑒
−𝜃𝜆𝑦𝑖)

𝑛

𝑖=1

 

+∑(1− δ𝑖) log(𝜃 + 1 − 𝑒
−𝜃𝜆𝑦𝑖)

𝑛

𝑖=1

 

−∑(1 + 𝛿𝑖) log(1 − (1 − 𝛼)(
1

𝜃
𝑒−𝜆𝑦𝑖(𝜃 + 1 − 𝑒−𝜃𝜆𝑦𝑖)))

𝑛

𝑖=1

 

+ log (
𝑏α
𝑎α

Γ(𝑎α)
𝛼𝑎𝛼−1𝑒−𝑏𝛼𝛼) + log(

𝑏θ
𝑎θ

Γ(𝑎θ)
𝜃𝑎𝜃−1𝑒−𝑏𝜃𝜃) 

+ log(
𝑏λ
𝑎λ

Γ(𝑎λ)
𝜆𝑎𝜆−1𝑒−𝑏𝜆𝜆). 

The joint posterior distribution is not in closed form, 

but the Markov Chain Monte Carlo (MCMC) methods can be 

applied to obtain the posterior distribution.  In this paper, the 

Metropolis-Hastings algorithm within Gibbs technique, with 

10,000 iterations and a burn-in of 5,000 samples in the 

LaplaceDemon package (Statisticat, 2016) of the R 

programming language (R Core Team, 2023), is employed. 

 

4. The Marshall-Olkin Weighted Exponential  

    Regression Model 
 

Let 𝒙𝒊 = (1, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝)
𝑇
be the vector of covariates. 

The parameter 𝝀𝒊 is linked to the covariates by the logarithmic 

link function log(𝝀𝒊) = 𝒙𝒊
𝑇𝜷, where 𝑖 = 1, 2, … , 𝑛 and 𝜷 =

(𝛽0, 𝛽1, … , 𝛽𝑝) is the vector of regression coefficients.  

Thus, the pdf of the MOWE regression can be 

defined by 
 

𝑓(𝑦) =
𝛼(𝜃 + 1)𝑒𝒙𝑖

𝑇𝜷𝑒−𝑒
𝒙𝑖
𝑇𝜷𝑦 (1 − 𝑒−𝜃𝑒

𝒙𝑖
𝑇𝜷𝑦)

𝜃 [1 − (1 − 𝛼) (
1
𝜃
𝑒−𝑒

𝒙𝑖
𝑇𝜷𝑦 (𝜃 + 1 − 𝑒−𝜃𝑒

𝒙𝑖
𝑇𝜷𝑦))]

2. 

 

The corresponding survival function is given by 
 

𝑆(𝑦) =
𝛼𝑒−𝑒

𝒙𝑖
𝑇𝜷𝑦 (𝜃 + 1 − 𝑒−𝜃𝑒

𝒙𝑖
𝑇𝜷𝑦)

𝜃 [1 − (1 − 𝛼) (
1
𝜃
𝑒−𝑒

𝒙𝑖
𝑇𝜷𝑦 (𝜃 + 1 − 𝑒−𝜃𝑒

𝒙𝑖
𝑇𝜷𝑦))]

. 

 

In this paper, the prior distributions for all unknown 

parameters considered are 

𝛼 ∼ gamma(0.001,0.001), 

𝜃 ∼ gamma(0.001,0.001), 

𝜷 ∼ N(0, 10000). 

We apply the Metropolis-Hastings within Gibbs 

technique with 10,000 iterations and a burn-in of 5,000 samples 

the LaplaceDemon package (Statisticat, 2016) in the R 

programming language (R Core Team, 2023) for the Bayesian 

estimates. 

 

5. Simulation Study 
 

In this section, Monte Carlo simulations are 

conducted to assess the performance of the Bayesian 

estimators. Two simulation studies are presented. The first 

simulation evaluates the Bayesian estimators for complete 

samples and the second one for censored samples. The 

inversion method is used to generate samples and the survival 

package (Therneau, 2023) in the R programming language (R 

Core Team, 2023) is used to generate censored samples. The 

simulations are carried out 1,000 times with 𝛼 = 0.5, 𝛽 = 0.5 

and 𝜆 = 0.5 for the different sample sizes n = 20, 50, 100, 200. 

We calculate the averages of the Bayesian estimates. The 

performance measures are based on root mean square error 

(RMSE) and average bias, defined by 
 

RMSE = √
∑ (�̂�𝑖−Θ)

21000
𝑖=1

1000
,      

and  Average bias = 
∑ (�̂�𝑖−Θ)
1000
𝑖=1

1000
. 

 

Tables 2 and 3 display simulation results from the 

MOWE model based on complete samples and right censored 

samples, respectively. The averages of the Bayesian estimates 

are close to the true values in both simulation studies.  The 

average biases approach zero as the sample size increase and 

the RMSEs decreases to zero with increasing sample size.  

 

6. Applications 
 

The MOWE distribution and the MOWE regression 

model are tested for performance in this section. The MOWE 

distribution is fitted to censored and non-censored real data sets 

and the distribution is compared with the exponential, gamma, 

WE, MOE, and MOG distributions. In the third application, the 

exponential, gamma, WE, MOE, MOG, and MOWE regression 

models are compared by using a censored data set. In this paper, 

the LaplaceDemon function (Statisticat, 2016) in the R 

programming language (R Core Team, 2023) is used for all 

models. The model selection is carried out by the log-likelihood 

(log L) value, the Akaike Information Criterion (AIC) (Akaike, 

1974), and the Deviance Information Criterion (DIC) 

(Spiegelhalter, Best, Carlin, & Van Der Linde, 2002).  The 

largest log L, smallest AIC, and smallest DIC values indicate 

the best model.
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The deviance is given by 

𝐷(Θ) = −2 log 𝐿(Θ|𝑦) + 𝑐, 

where 𝑐 is a constant that cancels out on comparing models. 

The DIC can be defined by 

𝐷(Θ̂) + 2𝑝𝐷, 

where 𝐷(Θ̂) is the deviance estimated at the posterior mean 

of Θ̂ and 𝑝𝐷 is the effective number of parameters. 

The deviance can be used to calculate the AIC by 

AIC = −2 log 𝐿(Θ̂|𝑦) + 2𝑝, 

where 𝑝 is the number of model parameters. 
 

6.1 Application 1 non-censored data 
 

The first data set describes 44 survival times of 

patients suffering from head and neck cancer diseases. Patients 

were treated by using a combination of radiotherapy and 

chemotherapy (Shanker, Fesshaye, & Selvaraj, 2015). The 

observations are as follows. 

Table 5 shows the posterior means, log L, AIC, and 

DIC values for survival times of patients suffering from head 

and neck cancer. From the results in Table 3, we can see that 

the MOWE provides the largest log L, the smallest AIC and the 

smallest DIC values. 

6.2 Application 2 censored data 
 

The second data set presents censored survival times 

for head and neck cancer patients treated by chemotherapy plus 

radiation (Efron, 1988). The observations are as in Table 6. 

Table 7 displays the posterior means, log L, AIC, and 

DIC values of all distributions fitted to censored survival times 

of head and neck cancer. The table shows that the MOWE 

distribution again provides the largest log L, the smallest AIC 

and the smallest DIC values. 

Figure 3 shows the Kaplan-Meier survival curve 

(empirical survival function plot) and estimated survival 

function plots for exponential, gamma, WE, MOE, MOG, and 

MOWE models. The figure shows that the MOWE model is the 

best one among the competing models because it is closest to 

the Kaplan-Meier survival curve. 

 

6.3 Application 3 regression model with censored  

      data 
 

The NKI breast cancer clinical data (Putter & Putter, 

2011; Van De Vijver et al., 2002; Van Houwelingen et al., 

2006; Van’t Veer et al., 2002) is considered to compare the 

exponential, gamma, WE, MOE, MOG, and MOWE regression 
 

Table 2. RMSE and average bias from the simulated MOWE model based on complete samples. 
 

n 
𝛼 𝜃 𝜆 

RMSE Average bias RMSE Average bias RMSE Average bias 
       

20 2.308 1.003 2.988 1.330 0.329 0.051 

50 0.811 0.355 1.822 0.870 0.190 0.035 

100 0.471 0.199 0.858 0.373 0.140 0.050 

200 0.275 0.083 0.325 0.093 0.108 0.048 
       

 
Table 3. RMSE and average bias from the simulated MOWE model based on censored samples. 
 

n 
𝛼 𝜃 𝜆 

RMSE Average bias RMSE Average bias RMSE Average bias 
       

20 0.365 0.262 3.588 2.961 0.320 0.307 

50 0.354 0.260 1.166 0.524 0.284 0.259 

100 0.331 0.251 0.799 0.402 0.235 0.220 
200 0.296 0.212 0.678 0.369 0.194 0.170 

       

 

Table 4. Non-censored survival times of patients suffering from head and neck cancer diseases 
 

          

12.20 23.56 23.74 25.87 31.98 37 41.35 47.38 55.46 58.36 
63.47 68.46 78.26 74.47 81.43 84 92 94 110 112 

119 127 130 133 140 146 155 159 173 179 

194 195 209 249 281 319 339 432 469 519 

633 725 817 1776 
 

      

 
Table 5. Posterior means, log L, AIC, and DIC values for fitted distributions to survival time data 
 

Distribution �̂� 𝜃 �̂� log L AIC DIC 

       

Exponential - - 0.0046 282.186 566.371 564.540 

Gamma - 1.0100 0.0045 283.270 570.540 568.207 

WE - 28.4024 0.0004 281.608 567.215 564.365 

MOE 0.4866 - 0.0029 281.657 567.314 564.174 

MOG 0.1700 1.6951 0.0034 279.041 564.082 560.030 

MOWE 0.0521 0.0005 0.0278 278.689 563.379 557.812 
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Table 6. Censored data survival times for head and neck cancer patients treated 

 
          

37 84 92 94 110 112 119 127 130 133 

140 146 155 159 169+ 173 179 194 195 209 
249 281 319 339 432 469 519 528+ 547+ 613+ 

633 725 759+ 817 1092+ 1245+ 1331+ 1557 1642+ 1771+ 

1776 1897+ 2023+ 2146+ 2297+ 
 

     

 
Table 7. Posterior means, log L, AIC, and DIC values for distributions fitted to censored survival times data 

 

Distribution �̂� 𝜃 �̂� log L AIC DIC 

       

Exponential - - 0.0013 243.908 489.815 488.962 

Gamma - 0.8286 0.0009 243.201 490.403 489.898 

WE - 40.8633 0.0011 242.463 488.926 485.722 

MOE 0.2176 - 0.0004 238.890 481.780 478.533 

MOG 0.1579 1.2416 0.0005 239.380 484.760 480.343 

MOWE 0.2266 36.1203 0.0005 237.632 481.264 477.155 
       

 

 
 

Figure 3. Kaplan-Meier curve and estimated survival function plots 

 
models. The data frame consists of 295 breast cancer patients 

in the Dutch Cancer Institute (NKI), Amsterdam. The variables 

used are as follows: 

- tyears, time (year) until death or last follow-up 

- d, survival status (1 = death; 0 = censored) 

- diameter, the primary tumor's diameter 

- age, the patient's age 

Table 8 shows the log L, AIC, and DIC values of all 

regression models fitted to NKI data. The table indicates that 

the MOWE regression model is suitable for the data set because 

the model provides the highest log L, the lowest AIC and the 

lowest DIC values. 

Table 9 displays posterior means, the lower bound 

(LB) and the upper bound (UB) of the 95% credible interval for 

parameters of the MOWE regression model. We can conclude 

that all parameters are significant at the level of 0.05. 

 

7. Discussion and Conclusions 
 

This article introduced a new generalized form of the 

WE     distribution,    called     the     Marshall-Olkin     weighted 

exponential   (MOWE)   distribution.    The   distribution   is 

obtained with the MO family transform based on the WE 

distribution. This model was proposed for survival data. Special 

cases of the proposed distribution were presented. Bayesian 

estimators of parameters were derived. The proposed 

distribution was compared with the exponential, gamma, WE, 

MOE, and MOG distributions by using complete and censored 

data.   Furthermore,  a   new  regression  model   based  on   the 

Table 8. log L, AIC, and DIC values for regression models fitted to  

NKI data 

 

Model log L AIC DIC 

    

Exponential 340.203 686.406 682.076 

Gamma 338.463 684.927 680.438 

WE 334.491 676.982 671.210 

MOE 338.914 685.829 679.721 

MOG 336.110 682.219 675.589 

MOWE 331.426 672.852 665.913 
    

 
Table 9. Posterior means and the 95% credible intervals of 

parameters for the MOWE regression model fit to NKI data 
 

Parameter Posterior mean LB UB 

    

𝛽0̂ 3.666 4.941 2.402 

𝛽1̂ 0.041 0.026 0.057 

𝛽2̂ 0.059 0.070 0.048 

�̂� 0.115 0.027 0.346 

𝜃 92.049 29.218 165.217 
    

 

MOWE distribution was constructed. We illustrated the 

usefulness of the MOWE regression model with a real data set. 

The proposed model provided better fits than other competitive 

models. However, the pdf of MOWE distribution has a quite 

complicated formula and many parameters.  In this paper, the 

Bayesian approach was applied for identifying the parameters, 

but it takes a long time to process. In a future study, other 

parameter estimation methods will be considered. 
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