Original Article |
2015, Vol.37, No.3, pp. 345-351
An integer programming for airplane rounting in the U.S. Center-TRACON
Srisawat Supsomboon and Zelda Zabinsky
pp. 345 - 351
Abstract
Air travel has been a major transportation for commerce and tour in many countries. As the demand of air traffic has been increasing, air traffic management has confronted with poverty of handling the increase of the demand of runway facilities where congestion often takes place. In order to cope with such problems, runway efficiency enhancement or capacity increasing are taken into account. In air traffic management, the effective air space utilization and air control workload management can be improved by the use of many up-to-date technologies in forms of decision support tools. This study developed a computer-aided decision support model in the form of integer programming. The purpose of the model was to allocate airplanes arrival at U.S. Center-TRACON airspace to enter feeder gates and to design optimal routes along the track to runway. Results of optimal path of the airplanes throughout the TRACON air space system which yield a minimum delay were presented.